Design of Bcl-2 and Bcl-xL Inhibitors with Subnanomolar Binding Affinities Based upon a New Scaffold ${ }^{\dagger}$

Haibin Zhou, ${ }^{\ddagger, \S}$ Jianfang Chen, ${ }^{\ddagger, \S}$ Jennifer L. Meagher, ${ }^{\|, \S}$ Chao-Yie Yang, ${ }^{\ddagger, \S}$ Angelo Aguilar, ${ }^{\ddagger, \S}$ Liu Liu, ${ }^{\ddagger, \S}$ Longchuan Bai, ${ }^{\ddagger}{ }^{\ddagger}$ Sin Cong, ${ }^{\ddagger}$ Qian Cai, ${ }^{\ddagger}$ Xueliang Fang, ${ }^{\ddagger}$ Jeanne A. Stuckey, ${ }^{\|}$and Shaomeng Wang ${ }^{*}{ }^{\ddagger}$
${ }^{\ddagger}$ Comprehensive Cancer Center and Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry and "Life Sciences Institute, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109-0934, United States

4 (Initial Lead, $\mathrm{K}_{\mathrm{i}}=100 \mu \mathrm{M}$ to $\mathrm{Bcl}-2 / \mathrm{Bcl}-\mathrm{xL}$)

21 ($\mathrm{K}_{\mathrm{i}}<1 \mathrm{nM}$ to Bcl-2/Bcl-xL)

Abstract

Employing a structure-based strategy, we have designed a new class of potent small-molecule inhibitors of the anti-apoptotic proteins Bcl-2 and Bcl-xL. An initial lead compound with a new scaffold was designed based upon the crystal structure of Bcl-xL and U.S. Food and Drug Administration (FDA) approved drugs and was found to have an affinity of $100 \mu \mathrm{M}$ for both Bcl-2 and Bcl-xL. Linking this weak lead to another weak-affinity fragment derived from Abbott's ABT-737 led to an improvement of the binding affinity by a factor of >10000. Further optimization ultimately yielded compounds with subnanomolar binding affinities for both $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ and potent cellular activity. The best compound (21) binds to $\mathrm{Bcl}-\mathrm{xL}$ and Bcl-2 with $K_{\mathrm{i}}<1 \mathrm{nM}$, inhibits cell growth in the H 146 and H 1417 small-cell lung cancer cell lines with IC_{50} values of $60-90 \mathrm{nM}$, and induces robust cell death in the H146 cancer cell line at $30-100 \mathrm{nM}$.

INTRODUCTION

Resistance to apoptosis is a hallmark of human cancer, ${ }^{1}$ and targeting key apoptosis regulators with the goal of promoting apoptosis is an exciting therapeutic strategy for cancer treatment. ${ }^{2,3}$

The Bcl-2 protein family is a class of key apoptosis regulators and consists of both anti-apoptotic proteins, including $\mathrm{Bcl}-2, \mathrm{Bcl}-\mathrm{xL}$, and Mcl-1, and pro-apoptotic proteins, such as BID, BIM, BAD, BAK, BAX, and NOXA. ${ }^{4}$ The anti-apoptotic Bcl-2 and Bcl-xL proteins are overexpressed in many different types of human tumor samples and cancer cell lines, and this overexpression confers resistance of cancer cells to current cancer treatments. ${ }^{5,6}$ The anti-apoptotic proteins inhibit apoptosis via heterodimerization with pro-apoptotic Bcl-2 family proteins. ${ }^{5,6}$ Despite their structural similarities, these anti-death $\mathrm{Bcl}-2$ proteins display a certain binding specificity on pro-death Bcl-2 proteins. ${ }^{5,6}$ For example, while $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ bind to BIM and BAD proteins with high affinities, they have very weak affinities for NOXA. In contrast, Mcl- 1 binds to BIM and NOXA with high affinities but has a very weak affinity for BAD. These data suggest that the pro-apoptotic proteins have nonredundant roles in the regulation of apoptosis.

It has been proposed that potent nonpeptide small molecules designed to block the protein-protein interactions between
anti- and pro-apoptotic Bcl-2 members can antagonize the antideath function of anti-apoptotic Bcl-2 proteins, and this in turn can overcome the apoptosis resistance of cancer cells mediated by the overexpression of these anti-apoptotic Bcl-2 proteins. ${ }^{5,6}$ Design of potent nonpeptide cell-permeable small-molecule inhibitors with the ability to block the protein-protein interactions involving the Bcl-2 family of proteins has been intensely pursued in the past decade as a novel cancer therapeutic strategy, and a number of laboratories have reported the design and characterization of nonpeptide small-molecule inhibitors. ${ }^{7-12}$
Among all the reported $\mathrm{Bcl}-2 / \mathrm{Bcl}-\mathrm{xL}$ inhibitors, compound $\mathbf{1}$ (ABT-737, Figure 1) is arguably the most potent compound. ${ }^{13}$ Compound 1 binds to Bcl-2, Bcl-xL, and Bcl-w with very high affinities ($K_{\mathrm{i}}<1 \mathrm{nM}$) and also shows a very high specificity over Mcl-1 and A1. ${ }^{13}$ Its analogue, 2 (ABT-263, Figure 1), has been advanced into phase I/II clinical trials for the treatment of human cancer. ${ }^{14,15}$ Recently, another class of potent Bcl-2/ Bcl-xL inhibitors, exemplified by compound 3 (Figure 1), was designed starting from the chemical structure of compound $\mathbf{1} .^{16}$

[^0]

1 (ABT-737)

2 (ABT-263)

3

Figure 1. Chemical structures of previously reported potent and specific Bcl-2/Bcl-xL inhibitors.

In this paper, we report our structure-based design of highly potent and specific small-molecule inhibitors of Bcl-2/Bcl-xL, started from a novel chemical scaffold designed based upon FDA-approved drugs and the crystal structures of Bcl-xL complexed with its inhibitors.

RESULTS AND DISCUSSION

Structure-Based Design of a New Chemical Scaffold to Target Bcl-xL. The crystal structure of Bcl-xL complexed with the BAD BH 3 peptide ${ }^{17}$ reveals that the peptide interacts with two large binding pockets in Bcl-xL, shown in Figure 2.

Figure 2. Crystal structure of $\mathrm{Bcl}-\mathrm{xL}$ with five key residues of BAD BH3 peptide at the binding site. Centroids of hydrophobic pharmacophores are shown as spheres. The pharmacophore model based on three residues at site 1 binding pocket (purple spheres within red circle) was used in pharmocophore search.

Site 1 is a deep, well-defined binding pocket, while site 2 is more exposed to solvents. We decided to focus on site 1 for the design of initial lead compounds with novel chemical scaffolds.

Site 1 of Bcl-xL interacts with Y105, L109, and M112, three hydrophobic residues of the BAD BH3 peptide. The distances between centers of mass of the side chains of any two of these three residues are between 5.5 and $7.4 \AA$ (Figure 2). These three closely clustered hydrophobic residues in the BAD BH3 peptide offer a 3D pharmacophore template, which we used to search for new scaffolds. A pharmacophore model was constructed from these three hydrophobic residues and the structural information, which consists of two aromatic rings and one hydrophobic group. The distance between the centers of the two aromatic rings was defined as $5 \pm 1 \AA$, and the distance between the center of each of the aromatic rings and the center of mass of the hydrophobic group was set to $6 \pm 1 \AA$. We were particularly interested in identifying scaffolds with good pharmacological and toxicological properties, and accordingly,
a pharmacophore search was made in an in-house threedimensional database of 1410 U.S. Food and Drug Administration (FDA) approved drugs. Eleven compounds were identified and were grouped into three classes on the basis of their scaffolds (Figure 3). Our initial efforts focused on the second class of compounds, which all contain the bis-arylsubstituted five-membered heterocyclic template and include the well-known drugs Lipitor and Celecoxib (Figure 3).

To explore the possible binding models of Lipitor and Celexocib with $\mathrm{Bcl}-\mathrm{xL}$, we performed computational docking of both drugs to $\mathrm{Bcl}-\mathrm{xL}$ using the crystal structure adopted by BclxL in its complex with the BAD BH3 peptide. As can be seen in Figure 4A ,B, the hydrophobic groups of Lipitor mimic Y105 and L109 of the BAD BH3 peptide in its interaction with BclxL, whereas the two phenyl groups of Celecoxib mimic the interaction between L109 and M112 of the BAD BH3 peptide with Bcl-xL. Figure 4A,B suggested that the bis-aryl-substituted five-membered heterocycle scaffold could mimic two of three critical hydrophobic residues in the BAD BH3 peptide.

On the basis of these analyses, compound 4 (Figure 4C), containing a 3,4 -diphenyl- 1 H -pyrrole-2-carboxamide scaffold, was designed. Since it was critical to determine the crystal structure of our initial lead compound complexed with $\mathrm{Bcl}-\mathrm{xL}$ for subsequent optimization efforts, we have decided to attach two soluble groups in compound $\mathbf{4}$ to facilitate crystallographic studies. Docking studies suggested that compound 4 can effectively interact with the deep hydrophobic pocket in site 1 .

Compound 4 was synthesized and evaluated for its binding to $\mathrm{Bcl}-\mathrm{xL}$ and $\mathrm{Bcl}-2$ proteins in fluorescence polarization (FP) assays. Compound 4 has K_{i} values of $78 \mu \mathrm{M}$ for $\mathrm{Bcl}-2$ and $138 \mu \mathrm{M}$ for Bcl-xL (Table 1). Although in a typical drug discovery program such weak affinities would seem to disqualify it as a useful lead compound, it does possess an attractive druglike core structure and excellent aqueous solubility, and it was proven to be an excellent starting point in our design of new and potent $\mathrm{Bcl}-2 / \mathrm{Bcl}-\mathrm{xL}$ inhibitors.

To provide a solid structural basis for our subsequent structurebased optimization of 4 , we determined its crystal structure, at a resolution of 1.7 Å, in a complex with Bcl-xL (Figure 4D). This shows that $\mathbf{4}$ indeed binds to the large, deep hydrophobic pocket in site 1 of Bcl-xL, supporting both our modeling prediction and our design premise.

Structure-Based Design of Potent Bcl-2/Bcl-xL Inhibitors. For a compound to achieve a high binding affinity for Bcl-xL, it may be necessary to occupy both sites 1 and 2 in the protein. ${ }^{13}$ Since 4 occupies only site 1 , a second fragment, capable of occupying site 2 , is needed. We used the crystal structure of 1 complexed with $\mathrm{Bcl}-\mathrm{xL}{ }^{18}$ to identify a fragment that could be accommodated in site 2 (red circle in Figure 4D).
Superposition of the crystal structure of 4 and the crystal structure of $\mathbf{1}$ in its complex with Bcl-xL showed that the core structure in $\mathbf{4}$

Figure 3. Three classes of scaffolds identified based on the pharmacophores in the Bad BH3 peptide. The three-dimensional pharmocophore model is based on two aromatic rings (shown in blue) and one hydrophobic group (shown in red). The distance between the aromatic rings was set to $5 \pm 1 \AA$, and the distances between the aromatic ring and hydrophobic groups were set to $6 \pm 1 \AA$.
and the p-chlorobiphenyl fragment in $\mathbf{1}$ (Figure 5A) both occupy site 1 . It is also evident that fragment 5 occupies site 2 in Bcl-xL (Figure 5A,B). Therefore, we reasoned that linking compounds 4 and 5 could yield new compounds with high affinity for $\mathrm{Bcl}-\mathrm{xL}$.

Compound 5 was synthesized by the published method ${ }^{19}$ and found to have very weak affinities $\left(\mathrm{IC}_{50}>100 \mu \mathrm{M}\right)$ for $\mathrm{Bcl-xL}$ and Bcl-2 proteins in our FP-based assays. These data further showed that interacting with either site 1 or site 2 is insufficient to yield compounds with high affinities for $\mathrm{Bcl}-\mathrm{xL}$ and $\mathrm{Bcl}-2$, and occupation of both sites is needed to achieve high affinities for $\mathrm{Bcl}-\mathrm{xL}$ and $\mathrm{Bcl}-2$. Therefore, we decided to link 4 and 5 together with a proper linker for the design of potent inhibitors of $\mathrm{Bcl}-\mathrm{xL}$ and $\mathrm{Bcl}-2$.

Analysis of the modeled structure of 5 complexed with Bcl-xL and the crystal structures of $\mathbf{1}$ and 4 complexed with $\mathrm{Bcl}-\mathrm{xL}$ suggested that the meta position of the unsubstituted phenyl ring in $\mathbf{4}$ and the sulfonamido nitrogen atom of 5 are sites at which $\mathbf{4}$ and $\mathbf{5}$ could be linked together for the design of potent Bcl-xL inhibitors (Figure 5B). The distance between this ring in 4 and the sulfonamido nitrogen atom of 5 is $8.2 \AA$ (Figure 5B).

Compound 6, designed to make use of the linker in 1 (Figures 5C and 6), which is $10.6 \AA$ in length, was found to have $K_{\mathrm{i}}=2.0 \mathrm{nM}$ for $\mathrm{Bcl}-2$ and $K_{\mathrm{i}}<1 \mathrm{nM}$ for Bcl-xL, and is thus >10000 times more potent than either 4 or 5 . The dramatically improved binding affinities of $\mathbf{6}$ over those of $\mathbf{4}$ and $\mathbf{5}$ supported our design strategy.

Compounds $\mathbf{1}$ and $\mathbf{6}$ have similar affinities for $\mathrm{Bcl}-\mathrm{xL}$, but $\mathbf{6}$ is less potent than 1 toward $\mathrm{Bcl}-2$ (Table 1). To further optimize the binding affinities of $\mathbf{6}$, we next tested linkers with various
lengths, flexibility, orientation, and chemical properties (Figures 5 C and 6). Modeling suggested that removal of the carbonyl group in the N-acylsulfonamide in $\mathbf{6}$ may lead to further improvement in the binding affinity (Figure S1 in Supporting Information). Removal of this carbonyl group from 6 gives 7, in which the linker has been shortened from 10.6 to $9.9 \AA$. The affinity of 7 for both $\operatorname{Bcl}-2$ and $\mathrm{Bcl-xL}\left(K_{\mathrm{i}}<1 \mathrm{nM}\right)$ is very similar to that of $\mathbf{1}$. Replacement of the piperazine in 7 by a triazole aromatic ring shortens the linker to $9.0 \AA$, giving 8 , which also binds to both $\mathrm{Bcl}-2$ and $\mathrm{Bcl-xL}$ with $K_{\mathrm{i}}<1 \mathrm{nM}$. Replacement of the piperazine ring in the linker in 6 with a rigid ethynyl group leads to 9 , which has a linker length of $9.1 \AA$ and binds to both Bcl-2 and Bcl-xL with $K_{\mathrm{i}}<1 \mathrm{nM}$. Removal of the carbonyl group from the N-acylsulfonamide group in 9 leads to $\mathbf{1 0}$, which has a linker length of $8.3 \AA$ and binds to $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ with $K_{\mathrm{i}}=1.5 \mathrm{nM}$ and 1.7 nM , respectively.

Hence, compounds 7, 8, and 9 bind to $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ with $K_{\mathrm{i}}<1 \mathrm{nM}$ and are as potent as 1 toward both proteins. The binding data show that tethering 4 and 5, two weak Bcl-2/ Bcl-xL inhibitors, with linkers approximately $9.0 \AA$ in length produced highly potent $\mathrm{Bcl}-2 / \mathrm{Bcl}-\mathrm{xL}$ inhibitors, whose affinities for $\mathrm{Bcl}-2 / \mathrm{Bcl}-\mathrm{xL}$ are 4 orders of magnitude better than those of $\mathbf{4}$ or $\mathbf{5}$. When the linker is longer ($10.6 \AA$ in $\mathbf{6}$) or shorter ($8.3 \AA$ in 10), the resulting compounds are less potent. To investigate the influence of linker flexibility, we synthesized 11, with a more flexible linker than that in 7 , and found that $\mathbf{1 1}$ is at least 10 times less potent than 7.

Celecoxib

Lipitor
Celecoxib

$\| \left\lvert\, \begin{gathered}\text { Structure-based design } \\ \text { of initial lead }\end{gathered}\right.$

4 (BM-501)

Figure 4. Structure-based design of a new scaffold as the initial lead compound 4 and its crystal structure in complex with Bcl-xL. (A, B) Rank 1 pose of (A) Lipitor and (B) Celecoxib with Bcl-xL, using the BAD BH3 peptide-bound Bcl-xL structure (PDB ID 2BZW). (C) Identification of the core scaffold from the FDA-approved drugs database for a new class of Bcl-2/Bcl-xL inhibitors. (D) Co-crystal structure of 4 in complex with Bcl-xL ($1.7 \AA$).

Table 1. Binding Affinities of Our Designed Compounds for Bcl-2 and Bcl-xL Proteins in Fluorescence Polarization Assays and Inhibition of Cell Growth in Two Cancer Cell Lines

compd	binding affinities					cell growth inhibition, $\mathrm{IC}_{50} \pm \mathrm{SD}$ ($\mu \mathrm{M}$)	
	Bcl-2 (FP)		$\mathrm{Bcl}-\mathrm{xL}$ (FP)		Mcl-1		
	$\mathrm{IC}_{50} \pm \mathrm{SD}(\mathrm{nM})$	$\mathrm{K}_{\mathrm{i}} \pm \mathrm{SD}(\mathrm{nM})$	$\mathrm{IC}_{50} \pm \mathrm{SD}(\mathrm{nM})$	$K_{\mathrm{i}} \pm \mathrm{SD}(\mathrm{nM})$	$\mathrm{IC}_{50} \pm \mathrm{SD}(\mu \mathrm{M})$	H146	H1417
4	$213 \pm 16(\mu \mathrm{M})$	$78.0 \pm 5.9(\mu \mathrm{M})$	$453 \pm 25(\mu \mathrm{M})$	$138 \pm 7.6(\mu \mathrm{M})$	>100	>10	>10
5	>100 ($\mu \mathrm{M}$)		$238 \pm 14(\mu \mathrm{M})$	$75.0 \pm 4.2(\mu \mathrm{M})$	>100	>10	>10
6	8.7 ± 1.9	2.0 ± 0.5	6.1 ± 1.5	<1	>10	>10	>10
7	1.3 ± 0.7	<0.6	6.2 ± 2.2	<1	>10	2.0 ± 1.1	1.8 ± 0.07
8	1.4 ± 0.8	<0.6	4.8 ± 1.1	<1	>10	>10	>10
9	1.9 ± 0.6	<0.6	5.7 ± 0.7	<1	>10	>10	>10
18	6.6 ± 2.2	1.5 ± 0.3	12.6 ± 3.1	1.7 ± 0.9	>10	>10	>10
19	60.6 ± 23.1	15.4 ± 6.0	44.1 ± 5.5	11.3 ± 0.6	>10	>10	>10
12	33.9 ± 3.8	8.5 ± 1.0	7.6 ± 1.6	<1	>10	2.5 ± 0.8	3.3 ± 1.4
13	85.3 ± 34.8	21.8 ± 9.0	88.3 ± 14.4	24.7 ± 4.0	>10	>10	>10
1	2 ± 0.2	<0.6	6 ± 2	<1	>1	0.097 ± 0.030	0.13 ± 0.05
14	>100 ($\mu \mathrm{M}$)		547 ($\mu \mathrm{M}$)	166 ($\mu \mathrm{M}$)	>100	>10	>10
15	$534 \pm 105(\mu \mathrm{M})$	$138 \pm 27(\mu \mathrm{M})$	$19 \pm 0.3(\mu \mathrm{M})$	$5.7 \pm 0.1(\mu \mathrm{M})$	>100	>10000	7.5 ± 0.7

X : different linkers between 4 and 5 .

Figure 5. Computational structure-based design of a new class of $\mathrm{Bcl}-2 / \mathrm{Bcl}-\mathrm{xL}$ inhibitors by linking two fragments with weak binding affinities. (A) Superposition of the crystal structure of 4 (green) onto the crystal structure of $\mathbf{1}$ (yellow) in complex with Bcl-xL (B) Measurement of the distance ($8.2 \AA$) between 4 and $\mathbf{5}$. The $\mathbf{1}$-bound Bcl -xL structure was used in the surface representation. (C) Chemical structures of $\mathbf{5}$ and the new designed Bcl-2/Bcl-xL inhibitors with different linkers.

4

8

12

5

9

13

6

10

14

7

11

15

Figure 6. Chemical structures of designed $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ inhibitors.

To examine binding specificity, we evaluated the binding of these compounds to Mcl-1. Similar to 1, compounds 6, 7, 8, 9, 10 and 11 all were found to bind to $\mathrm{Mcl}-1$ with $\mathrm{IC}_{50}>10 \mu \mathrm{M}$, thus showing very high specificity over Mcl-1 (Table 1).

Changing the attachment position of the linker from the meta to the para position of the phenyl ring in $\mathbf{7}$ results in $\mathbf{1 2}$ (Figure 6), which is >10 times less potent than 7 in binding to Bcl-2 but is equipotent with 7 in its binding to $\mathrm{Bcl}-\mathrm{xL}$ (Table 1).

7

16

17

18

19

20

21

Figure 7. Chemical structures of 7 and its analogues.
Table 2. Binding Affinities of Our Designed Compounds for Bcl-2 and Bcl-xL Proteins in Fluorescence Polarization Assays and Inhibition of Cell Growth in Two Small-Cell Lung Cancer Cell Lines

compd	binding affinities					cell growth inhibition, $\mathrm{IC}_{50} \pm \mathrm{SD}(\mu \mathrm{M})$	
	Bcl-2 (FP)		Bcl-xL(FP)		Mcl-1		
	$\mathrm{IC}_{50}+\mathrm{SD}(\mathrm{nM})$	$\mathrm{K}_{\mathrm{i}} \pm \mathrm{SD}(\mathrm{nM})$	$\mathrm{IC}_{50} \pm \mathrm{SD}(\mathrm{nM})$	$K_{\mathrm{i}} \pm \mathrm{SD}(\mathrm{nM})$	$\mathrm{IC}_{50} \pm \mathrm{SD}(\mu \mathrm{M})$	H146	H1417
7	1.3 ± 0.7	<0.6	6.2 ± 2.2	<1	>10	2.0 ± 1.1	1.8 ± 0.07
16	0.6 ± 0.2	<0.6	4.9 ± 1.2	<1	>10	0.43 ± 0.25	0.65 ± 0.51
17	5.3 ± 0.6	1.2 ± 0.2	6.3 ± 0.4	<1	>2	0.40 ± 0.31	0.65 ± 0.15
18	82.6 ± 19.5	21.1 ± 5.0	34.4 ± 3.5	8.3 ± 1.0	>2	>10	>10
19	45.8 ± 26.1	11.6 ± 6.8	12.6 ± 5.4	1.7 ± 0.6	>2	4.9 ± 3.2	7.3 ± 2.8
20	1.7 ± 1.0	<0.6	3.6 ± 1.1	<1	>2	0.34 ± 0.01	0.552 ± 0.089
21	4.1 ± 0.7	0.8 ± 0.2	7.5 ± 1.3	<1	>2	0.061 ± 0.009	0.090 ± 0.003
1	2 ± 0.2	<0.6	6 ± 2	<1	>1	0.097 ± 0.03	0.13 ± 0.05

We also synthesized 13 (Figure 6), an analogue of 1 lacking the benzamido carbonyl group. This compound binds to $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ with K_{i} values of 18 nM and 17 nM , respectively, an affinity >10 times weaker than that of $\mathbf{1}$. Hence, the carbonyl group in 1 evidently contributes significantly to its binding affinities for $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$. By contrast, removal of the corresponding carbonyl group in $\mathbf{6}$ enhances the binding affinity for $\mathrm{Bcl}-2$ by 6 times while having no effect on the binding to $\mathrm{Bcl}-\mathrm{xL}$.

Compounds 14 and 15, fragments of 7 (Figure 6), were synthesized and their binding to $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ was examined. Both 14 and 15 bind to $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ with weak affinities (Table 1).

As a single agent, 1 was shown to be very effective in inhibition of cancer cell growth in cancer cell lines such as small-cell lung cancer cell lines H146 and H1417, with high levels of Bcl-2/Bcl-xL but low levels of Mcl-1. Since 7 and several other compounds bind to $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ with very high affinities, show high specificity over Mcl-1 and have the same binding profiles as $\mathbf{1}$, we evaluated their ability, in comparison to 1 , to inhibit cell growth in the H146 and H1417 cancer cell lines with the results shown in Table 1.

Consistent with their weak binding affinities, four compounds $(4,5,14$, and 15$)$ have poor activities ($\left.\mathrm{IC}_{50}>10 \mu \mathrm{M}\right)$ in inhibition of cell growth in these two cancer cell lines. Although compounds 6, 8, 9, 10, and 11 all have high affinities for both $\mathrm{Bcl}-2$ and Bcl-xL, they also have weak cellular activities ($\mathrm{IC}_{50}>10 \mu \mathrm{M}$), suggesting that these compounds may suffer from poor cell per-
meability. Removal of the carbonyl group from the linker in 6 to give 7 significantly improves both the binding affinities for $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ and the cellular activity. Compound 7 inhibits cell growth in these two cancer cell lines and has IC_{50} values of approximately $2.0 \mu \mathrm{M}$ against both cancer cell lines. In contrast, removal of the corresponding carbonyl group in $\mathbf{1}$, which results in compound 13, is detrimental to binding affinities for both $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$, as well as to the cell growth inhibitory activities. The binding and cellular data thus identify 7 as a promising lead compound for further optimization, and accordingly, we focused next on 7 to further investigate the structureactivity relationships (SAR) for this class of compounds.

Structure-Activity Relationships of Compound 7. Modeling suggested that the dihydroxybutyl side chain in 7 lacks any specific interactions with Bcl-xL (Figure S1B in Supporting Information). Removal of this dihydroxybutyl side chain yields 16 (Figure 7), which binds to Bcl-2 and Bcl-xL with $K_{\mathrm{i}}<1 \mathrm{nM}$. It inhibits cell growth in the H146 and H1417 cancer cell lines with IC_{50} values of $0.43 \mu \mathrm{M}$ and $0.65 \mu \mathrm{M}$, respectively, and is thus $3-5$ times more potent than 7 (Table 2). The data thus show that truncation of the dihydroxybutyl side chain in 7 to a methyl group is accompanied by retention of the high binding affinities for $\mathrm{Bcl}-2 / \mathrm{Bcl}-\mathrm{xL}$ and significant improvement in its cellular activities in both the H146 and H1417 cancer cell lines.

Figure 8. Binding models of (A) 20 and (B) 21 with $\mathrm{Bcl}-\mathrm{xL}$. The Bcl protein from the crystal structure between 1 and $\mathrm{Bcl}-\mathrm{xL}$ was used in the docking simulations. The highest ranked poses of both compounds were selected as the binding models. The ethyl group added to 20 is denoted by the red circle. Residues of $\mathrm{Bcl}-\mathrm{xL}$ at the binding site are labeled.

Figure 9. (A) Cell death induction by 20 and 21 in the H 146 cancer cell line. Cells were treated for 24 h and cell death was analyzed by trypan blue assay. (B) Induction of cleavage of PARP and caspase-3 by 20 and 21 in the H146 cell line. Cells were treated for 24 h , and caspase- 3 and PARP were probed by Western blotting.

The N-[3-(4-methylpiperazin-1-yl)propyl]amide side chain in 16 was used to improve the aqueous solubility. We investigated the effect of modifications of this side chain in $\mathbf{1 6}$ on binding to $\mathrm{Bcl}-2 / \mathrm{Bcl}-\mathrm{xL}$. Compound 17, in which the $\mathrm{N}-[3-$ (4-methylpiperazin-1-yl)propyl]amide side chain in 16 was truncated to an N -methylcarbamoyl group (Figure 7), binds to $\mathrm{Bcl}-2$ with $K_{\mathrm{i}}=1.2 \mathrm{nM}$ and to $\mathrm{Bcl-xL}$ with $K_{\mathrm{i}}<1 \mathrm{nM}$. Compounds 16 and 17 thus have similar potencies in inhibition of cell growth against both the H146 and H1417 cell lines. Compound 18, obtained by removal of the N-methylcarbamoyl group from 17, has a much weaker binding affinity for both $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ than 16 and 17. It also has very weak cellular activity in both H146 and H 1417 cancer cell lines with IC_{50} values $>10 \mu \mathrm{M}$ (Table 2). These data show that the amide group in $\mathbf{1 6}$ and $\mathbf{1 7}$ plays a role in binding to $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ and in inhibition of cell growth.

Replacement of the N-methylcarbamoyl substituent on the pyrrole ring in 17 by a carbethoxyl group results in 19 (Figure 7), which binds to Bcl-2 10 times less potently than 17, but 19 is only slightly less potent than 17 in binding to $\mathrm{Bcl}-\mathrm{xL}$. It has IC_{50} values of $4.9 \mu \mathrm{M}$ and $7.3 \mu \mathrm{M}$ in inhibition of cell growth in H 146 and H1417 cancer cell lines, respectively, and is thus 10 times less potent than 17 (Table 2).

Replacement of the N-methylcarbamoyl substituent on the pyrrole ring of $\mathbf{1 7}$ by a carboxyl substituent generates 20 , which
binds to $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ with high affinities, with $K_{\mathrm{i}}<1 \mathrm{nM}$, and has IC_{50} values of $0.34 \mu \mathrm{M}$ and $0.55 \mu \mathrm{M}$ in inhibition of cell growth against the H146 and H1417 cancer cell lines, respectively.

In an effort to further improve the binding affinities and especially the cellular activity of 20, we performed docking simulations of 20 based on the crystal structures of 4 and 1 complexed with Bcl-xL. The predicted binding model for 20 (Figure 8A) suggested that there is an unoccupied small hydrophobic pocket close to the 5 -position of the pyrrole core in 20. Accordingly, we designed and synthesized 21, in which an additional ethyl group was introduced to the 5 -position of the pyrrole ring in 20 (Figures 7 and 8B). Compound 21 binds to both Bcl-2 and Bcl-xL with very high affinities ($K_{\mathrm{i}}<1 \mathrm{nM}$), actually exceeding the lower limits of the assays, and it has an improved cell-growth inhibitory activity against the H146 and H1417 cancer cell lines, with IC_{50} values of 61 nM and 90 nM , respectively. Hence, $\mathbf{2 1}$ is as potent as $\mathbf{1}$, both in binding to $\mathrm{Bcl}-2$ and Bcl-xL and in inhibition of cell growth against both the H146 and H1417 cancer cell lines.

Further Evaluation of Compounds 20 and 21. We next evaluated the ability of $\mathbf{2 0}$ and 21 to induce cell death in the H146 cell line (Figure 9A). Both compounds effectively induce cell death in a dose-dependent manner in H146 cells as

Scheme 1. Synthesis of Compound $4{ }^{\text {a }}$

${ }^{a}$ Reagents and conditions: (a) (i) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, reflux; (ii) $\mathrm{CNCH}_{2} \mathrm{COOEt}$, t-BuOK. (b) (S)-4-(2-Iodoethyl)-2,2-dimethyl-1,3-dioxolane, $\mathrm{K}_{2} \mathrm{CO}_{3}$. (c) (i) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O} / \mathrm{THF} / \mathrm{MeOH}$; (ii) 3-(4-methylpiperazin-1-yl)propan-1-amine, EDCI, HOBt, DIEA, DCM; (iii) 4 M HCl in dioxane, MeOH.

Scheme 2. Synthesis of Compound 6^{a}

${ }^{a}$ Reagents and conditions: (a) (i) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, reflux; (ii) $\mathrm{CNCH}_{2} \mathrm{COOEt}, \mathrm{t}$-BuOK. (b) (S)-4-(2-Iodoethyl)-2,2-dimethyl-1,3-dioxolane, $\mathrm{K}_{2} \mathrm{CO}_{3}$. (c) (i) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O} / \mathrm{THF} / \mathrm{MeOH}$; (ii) 3-(4-methylpiperazin-1-yl)propan-1-amine, EDCI, HOBt, DIEA, DCM. (d) (i) 27, Pd(dba) 2 , tri-tertbutylphosphine, sodium tert-butoxide, DMF, toluene; (ii) 4 M HCl in dioxane, $\mathrm{MeOH}, 10 \mathrm{~min}$.
determined in a trypan blue assay, with 21 being more potent than 20. Compound 21 induces substantial cell death at $30-100 \mathrm{nM}$ and $>70 \%$ cell death in 24 h at 300 nM .

We further tested 20 and 21 in the H146 cell line for their ability to induce cleavage of poly(ADP-ribose) polymerase (PARP) and caspase-3, two biochemical markers of apoptosis (Figure 9B), and found that 21 is more potent than 20 and can effectively induce cleavage of PARP and caspase- 3 in 24 h at concentrations as low as 100 nM . These data are consistent with their activities in the cell growth assay.

Synthesis. The synthesis of the initial lead compound (4) is outlined in Scheme 1. Briefly, benzaldehyde, 4-chlorophenyl cyanide, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ were heated in methanol to generate 2-(4-chlorophenyl)-3-phenylacrylonitrile, which was used in a $2+3$ cycloaddition reaction with ethyl isocyanoacetate to produce pyrrole $22 .{ }^{20}$ Alkylation of 22 with (S)-4-(2-iodoethyl)-2,2-dimethyl-1,3-dioxolane in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ at $60{ }^{\circ} \mathrm{C}$ in N, N-dimethylformamide (DMF) gave 23, hydrolysis of which afforded the corresponding acid, which was coupled to 1-(3-amino-
propyl)-4-methylpiperazine. Removal of the acetal protecting group with HCl produced 4.

The synthesis of compound 6 is shown in Scheme 2. Compounds 24,25 , and 26 were synthesized, employing the same strategy as in Scheme 1, and intermediate 27 was prepared as described previously. ${ }^{19}$ Compound 6 was formed by palladiumcatalyzed amination ${ }^{21}$ of $\mathbf{2 6}$ with 27 in the presence of $\operatorname{Pd}(\mathrm{dba})_{2}$ and tri-tert-butylphosphine, followed by acetal deprotection.

Compounds 7, 13, 14, and 15 were prepared as shown in Scheme 3. Commercially available 4-fluoro-3-nitrobenzene-1sulfonyl chloride was treated with the corresponding aniline in pyridine at $0^{\circ} \mathrm{C}$ to produce the sulfonamides 28 and 29. (R)N^{1}, N^{1}-dimethyl-4-(phenylthio)butane-1,3-diamine was used to displace the fluorine in 28 and the Boc group was removed to give compound 15 . Using the same strategy, 14 was synthesized from 29. Palladium-catalyzed amination was again employed to couple 15 and 26, and the resulting compound was deprotected to generate compound 7. Reductive amination of 15 with 4^{\prime} -chloro-[1, 1'-biphenyl]-2-carbaldehyde was employed in the

Scheme 3. Synthesis of Compounds 7, 13, 14, and 15^{a}

${ }^{a}$ Reagents and conditions: (a) tert-Butyl 4-(4-aminophenyl)piperazine-1-carboxylate, pyridine. (b) (i) (R)- N^{1}, N^{1}-Dimethyl-4-(phenylthio)butane-1,3-diamine, DIEA, DMF; (ii) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (c) (i) 26, $\mathrm{Pd}(\mathrm{dba})_{2}$, tri-tert-butylphosphine, sodium tert-butoxide, DMF, toluene; (ii) 4 M HCl in dioxane, $\mathrm{MeOH}, 10 \mathrm{~min}$. (d) 4^{\prime}-Chloro-[1,1'-biphenyl]-2-carbaldehyde, $\mathrm{Na}(\mathrm{OAc})_{3} \mathrm{BH}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$. (e) Aniline, pyridine. (f) (R)- N^{1}, N^{1}-Dimethyl-4-(phenylthio)butane-1,3-diamine, DIEA, DMF.

Scheme 4. Synthesis of Compounds 9 and 10^{a}

5

30

${ }^{a}$ Reagents and conditions: (a) 4-Ethynylbenzoic acid, EDCI, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (b) (i) 26, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CuI}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}$; (ii) 4 M HCl in dioxane, $\mathrm{MeOH}, 10 \mathrm{~min}$. (c) (i) 4-Ethynylaniline, pyridine; (ii) (R) $-N_{1}, N_{1}$-dimethyl-4-(phenylthio)butane-1,3-diamine, DIPEA, DMF.
presence of sodium triacetoxyborohydride and 1,2-dichloroethane to give 13.

Compounds 9 and 10, in which the linker is an ethynyl group, were synthesized as shown in Scheme 4. Compound 5 was synthesized by the published procedure. ${ }^{19}$ Compound 5 was then coupled with 4-ethynylbenzoic acid in the presence of 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDCI) to give compound $30 . \operatorname{Pd}(0)$-catalyzed coupling ${ }^{22}$ of the iodide 26 with the terminal alkyne 30, followed by deprotection of the acetal with HCl , yielded compound 9 . Compound 10 was synthesized by a procedure similar to that for compound 9 .

Scheme 5 shows synthesis of compound 8 with a triazole ring as the linker. $\mathrm{CuI} / \mathrm{L}$-proline-catalyzed coupling reaction ${ }^{23}$ of aryl iodide 26 with sodium azide was carried out at $70{ }^{\circ} \mathrm{C}$ in dimethyl sulfoxide (DMSO) to produce 32. This aryl azide 32 and alkyne 31 were joined by a Cu^{I}-catalyzed Huisgen cyclo-
addition ${ }^{24}$ in a mixture of water and t-butanol in the presence of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and (+)-sodium l-ascorbate. The acetal group in the resulting triazole was removed with HCl to produce compound 8.

The linear synthetic strategy shown in Scheme 6 was employed to prepare compounds 12 and 11. Compounds 33 and 34 were synthesized by the strategy described in Scheme 1. With l-proline as a promotor, Ullmann-type $\mathrm{C}-\mathrm{N}$ bond formation reaction ${ }^{25}$ of 34 with 1-(p-nitrophenyl)piperazine provided intermediate 35 , and subsequent hydrolysis of the ethyl ester and coupling with 1-(3-aminopropyl)-4-methylpiperazine in the presence of EDCI gave 36. Hydrogenation of the nitro group in 36 gave the aniline, which was treated with 4-fluoro-3-nitrobenzene-1-sulfonyl chloride in pyridine. Subsequent displacement of the fluoro group with (R)- N^{1}, N^{1}-dimethyl-4-(phenylthio)butane-1,3-diamine and acetal deprotection

Scheme 5. Synthesis of Compound 8^{a}

${ }^{a}$ Reagents and conditions: (a) NaN_{3}, CuI, L-proline, NaOH , DMSO, $70^{\circ} \mathrm{C}$. (b) (i) $31, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, sodium L-ascorbate, $\mathrm{H}_{2} \mathrm{O} / \mathrm{t}$ - BuOH ; (ii) 4 M HCl in dioxane, $\mathrm{MeOH}, 10 \mathrm{~min}$.

Scheme 6. Synthesis of Compounds 12 and 11^{a}

${ }^{a}$ Reagents and conditions: (a) (i) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, reflux; (ii) $\mathrm{CNCH}_{2} \mathrm{COOEt}$, t -BuOK. (b) (S)-(2-iodoethyl)-2,2-dimethyl-1,3-dioxolane, $\mathrm{K}_{2} \mathrm{CO}_{3}$. (c) 1-(4-Nitrophenyl)piperazine, CuI, l-proline, $\mathrm{K}_{2} \mathrm{CO}_{3}, 80^{\circ} \mathrm{C}, 2 \mathrm{~h}$. (d) (i) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O} / \mathrm{THF} / \mathrm{MeOH}$; (ii) 3-(4-methylpiperazin-1-yl)propan-1amine, EDCI, HOBt, DIEA, DCM. (e) (i) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, (ii) 4-fluoro-3-nitrobenzene-1-sulfonyl chloride, pyridine; (iii) (R)- N^{1}, N^{1}-dimethyl-4-(phenylthio)butane-1,3-diamine, DIPEA, DMF. (iv) 4 M HCl in dioxane, MeOH . (f) N^{1}-(4-Nitrophenyl)ethane-1,2-diamine, CuI, l-proline, $\mathrm{K}_{2} \mathrm{CO} \mathrm{C}_{3}$, $80^{\circ} \mathrm{C}$, overnight.

Scheme 7. Synthesis of Compounds 16-20 ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$. (b) 1-(4-Nitrophenyl) piperazine, CuI, L-proline, $\mathrm{K}_{2} \mathrm{CO}_{3}, 80^{\circ} \mathrm{C}, 2 \mathrm{~h}$. (c) (i) $\mathrm{KOH}, \mathrm{H} 2 \mathrm{O} / \mathrm{THF} / \mathrm{MeOH}$, reflux; (ii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$; (iii) 4-fluoro-3-nitrobenzene-1-sulfonyl chloride, pyridine; (iv) (R)- N^{1}, N^{1}-dimethyl-4-(phenylthio)butane-1,3-diamine, DIPEA, DMF. (d) 3-(4-Methylpiperazin-1-yl)propan-1-amine, EDCI, HOBt, DIEA, DCM. (e) Methylamine, EDCI, HOBt, DIEA, DCM. (f) TFA, CH ${ }_{2}$ Cl 2 . (g) EtOH, N, N^{\prime}-diisopropylcarbodiimide, 4-(dimethylamino)pyridine, THF.

Scheme 8. Synthesis of Compound 21^{a}

${ }^{a}$ Reagents and conditions: (a) (i) NBS, DMF; (ii) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$. (b) 1-(4-Nitrophenyl)piperazine, CuI, L-proline, $\mathrm{K}_{2} \mathrm{CO}_{3}, 80{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$. (c) Ethynyltrimethylsilane, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CuI}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}, 85{ }^{\circ} \mathrm{C}$. (d) KOH , dioxane, $\mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}$, reflux, 2 h . (e) (i) H_{2}, Pd / C; (ii) 4-fluoro-3-nitrobenzene-1-sulfonyl chloride, pyridine; (iii) (R)- N^{1}, N^{1}-dimethyl-4-(phenylthio)butane-1,3-diamine, DIPEA, DMF.
with HCl produced 12. Compound 11 was synthesized similarly.

The syntheses of compounds $\mathbf{1 6 - 2 0}$ are outlined in Scheme 7. Methylation with MeI and subsequent Ullmann-type $\mathrm{C}-\mathrm{N}$ bond formation reaction of 24 yielded compound 39 . Compound 20 was prepared from 39 by a strategy similar to that used for $\mathbf{1 2}$. The amides 16 and $\mathbf{1 7}$ were produced by coupling the acid 20 to the corresponding amines by use of EDCI and hydroxybenzotriazole (HOBt). Treatment of 20 with trifluoroacetic acid (TFA) afforded the decarboxylated compound 18. The ester 19 was synthesized by condensation of ethanol and the acid $\mathbf{2 0}$ with N, N^{\prime}-diisopropylcarbodiimide in the presence of 4-(dimethylamino) pyridine.

Compound 21 was prepared as shown in Scheme 8. Bromination of 24 with N-bromosuccinimide (NBS) in DMF and subsequent methylation afforded 40, which was coupled to 1 -(p-nitrophenyl)piperazine to give the intermediate 41. Sonogashira coupling of $\mathbf{4 1}$ with ethynyltrimethylsilane in the presence of CuI and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ yielded 42. Hydrolysis of the ethyl ester and simultaneous removal of the trimethylsilane protecting group in $\mathbf{4 2}$ afforded 43. Reduction of the nitro and ethynyl groups in 43 with H_{2} and Pd / C as the catalyst gave a product which, subjected to the same strategy as described in Scheme 7, yielded compound 21.

SUMMARY

Employing a computational structure-based design strategy, we have designed compound 4, which contains a novel druglike scaffold and binds to one well-defined binding pocket in $\mathrm{Bcl}-\mathrm{xL}$. The binding model of 4 with $\mathrm{Bcl}-\mathrm{xL}$ was determined experimentally by X-ray crystallography. On the basis of the crystal structure of 4 and of $\mathbf{1}$ (ABT-737) in complex with Bcl-xL, we employed $\mathbf{4}$ and 5 , a large fragment of $\mathbf{1}$, for the design of new small-molecule inhibitors that occupy two separate binding pockets in $\mathrm{Bcl}-\mathrm{xL}$. Although both 4 and 5 bind to Bcl-2 and Bcl-xL with very weak affinities, linking them together with appropriate linkers yielded compounds with very high affinities ($K_{\mathrm{i}}<1 \mathrm{nM}$) for both Bcl-2 and Bcl-xL. Optimization of the linker between them resulted in 7, which not only binds to Bcl2 and Bcl-xL with high affinities ($K_{\mathrm{i}}<1 \mathrm{nM}$) but also potently inhibits cell growth in two small-cell lung cancer cell lines, which are sensitive to potent and specific Bcl-2/Bcl-xL inhibitors. Our results demonstrate that linking two molecules with very weak affinities for $\mathrm{Bcl}-2 / \mathrm{Bcl}-\mathrm{xL}$ with appropriate linkers can result in highly potent $\mathrm{Bcl}-2 / \mathrm{Bcl}-\mathrm{xL}$ inhibitors.

The nature of the linker plays a key role in achieving high binding affinities for $\mathrm{Bcl}-2 / \mathrm{Bcl}-\mathrm{xL}$ and potent cell growth inhibitory activity against cancer cells. Further structureactivity relationship studies of 7 yielded a very promising lead compound, 21, which binds to $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ with K_{i} values $<1 \mathrm{nM}$, exceeding the limits of the binding assays. Compound 21 achieves IC_{50} values of 60 and 90 nM against the H146 and H1417 cancer cell lines and induces robust cell death in the H146 cancer cell line at 30 nM . It is now the subject of further optimization, the results of which will be reported in future publications.

EXPERIMENTAL SECTION

General Chemistry Information. Unless otherwise stated, all reactions were performed under nitrogen atmosphere in dry solvents under anhydrous conditions. Reagents were used as supplied without further purification unless otherwise noted. NMR spectra were acquired at a proton frequency of 300 MHz , and chemical shifts are reported in parts per million (ppm) relative to an internal standard. The final products were purified by a C18 reverse phase semipreparative HPLC column with solvent A (0.1% TFA in water) and solvent B (0.1% TFA in $\mathrm{CH}_{3} \mathrm{CN}$) as eluents.

Ethyl 4-(4-Chlorophenyl)-3-phenyl-1H-pyrrole-2-carboxylate (22). A mixture of benzaldehyde ($1.06 \mathrm{~g}, 10 \mathrm{mmol}$), 4-chlorophenyl cyanide ($1.52 \mathrm{~g}, 10 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.66 \mathrm{~g}$, 12 mmol) was refluxed overnight in $\mathrm{MeOH}(15 \mathrm{~mL})$ under N_{2}. The mixture was cooled, poured into $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, and stirred for 20 min . The precipitate was collected by filtration, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and petroleum ether $(2 \times 15 \mathrm{~mL})$, and air-dried to give 2-(4-chlorophenyl)-3-phenylacrylonitrile. A solution of this compound and ethyl isocyanoacetate (1.13 g , 10 mmol) in tetrahydrofuran (THF; 20 mL) was added dropwise to a stirred solution of potassium t-butoxide (1.34 g , $12 \mathrm{mmol})$ in DMF $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under N_{2}. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(2 \times 20 \mathrm{~mL})$. The combined organic fractions were washed with water $(20 \mathrm{~mL})$ and then with brine $(20 \mathrm{~mL})$. After removal of the solvent under vacuum, the residue was purified by flash chromatography on silica gel to afford 22 ($1.7 \mathrm{~g}, 52 \%$ over two steps). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}\right) \delta 9.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 5 \mathrm{H})$, $7.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) $\delta 161.4,134.2,133.1$,
131.9, 130.8, 129.5, 129.2, 128.4, 127.6, 127.0, 125.5, 120.4, 120.2, 60.4, 14.0.
(S)-Ethyl 4-(4-Chlorophenyl)-1-[2-(2,2-dimethyl-1,3-di-oxolan-4-yl)ethyl]-3-phenyl-1H-pyrrole-2-carboxylate (23). Compound 22 (1.7 g 5.2 mmol), ((S)-4-(2-iodoethyl)-2,2-dimethyl-1,3-dioxolane ($2.0 \mathrm{~g}, 7.8 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.2 \mathrm{~g}$, 15.6 mmol) in DMF (15 mL) were heated to $60^{\circ} \mathrm{C}$ for 8 h . The reaction was cooled, diluted with water (20 mL), and extracted into EtOAc ($30 \mathrm{~mL}, 2 \times 20 \mathrm{~mL}$). The combined organic fractions were washed with water $(4 \times 10 \mathrm{~mL})$ and then with brine (10 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, the residue was purified by flash chromatography on silica gel to provide $23\left(2.2 \mathrm{~g}, 92 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CCl}_{3} \mathrm{D}\right) \delta 7.30-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.65-4.57$ $(\mathrm{m}, 1 \mathrm{H}), 4.47-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.01(\mathrm{~m}, 4 \mathrm{H}), 3.61(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}$, 3 H), $1.39(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}\right) \delta$ 161.5, 135.8, 133.0, 131.6, 131.4, 130.6, 129.2, 128.3, 127.6, 126.7, 126.3, 123.0, 119.9, 73.2, 69.1, 59.8, 46.8, 35.5, 27.1, 25.7, 13.6 .
(S)-4-(4-Chlorophenyl)-1-(3,4-dihydroxybutyl)-N-[3-(4-methylpiperazin-1-yl)propyl]-3-phenyl-1H-pyrrole-2carboxamide (4). Potassium hydroxide ($0.2 \mathrm{~g}, 3.6 \mathrm{mmol}$) was added to a solution of $23(0.54 \mathrm{~g}, 1.2 \mathrm{mmol})$ in a mixture of THF/methanol/water ($1: 1: 1,10 \mathrm{~mL}$) and the solution was refluxed until no starting material could be detected by thinlayer chromatography (TLC). After being cooled, the reaction was neutralized with 1 M HCl and extracted with EtOAc. The EtOAc solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuum to produce the crude acid, which was used in the next step without purification. A solution of this acid, 1-(3-aminopropyl)-4-methylpiperazine ($0.23 \mathrm{~g}, 1.4 \mathrm{mmol}$), EDCI (0.35 g 1.8 mmol), HOBt ($0.23 \mathrm{~g}, 1.8 \mathrm{mmol}$), and N, N-diisopropylethylamine $(0.42 \mathrm{~mL}, 2.4 \mathrm{mmol})$ in dichloromethane (DCM; 10 mL) was stirred for 8 h and then concentrated. The residue was resolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and treated with 1 mL of HCl solution (4 N in dioxane) for 10 min , and then the solvent was removed under vacuum. The residue was then purified by HPLC to provide $4(0.5 \mathrm{~g}$, 79%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.24-7.20(\mathrm{~m}, 3 \mathrm{H})$, $7.09-6.89(\mathrm{~m}, 5 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.28-4.16(\mathrm{~m}$, $2 \mathrm{H}), 3.50-3.35(\mathrm{~m}, 11 \mathrm{H}), 3.12-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H})$, $2.82-2.75(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.63(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 165.6,136.2,134.9,132.6$, 131.8, 130.5, 129.7, 129.2, 128.4, 126.6, 126.1, 124.9, 123.6, 70.2, 67.3, 55.5, 51.6, 49.9, 46.2, 43.4, 37.3, 36.4, 25.1; ESI MS m / z $525.8(\mathrm{M}+\mathrm{H})^{+}$.

Ethyl 4-(4-Chlorophenyl)-3-(3-iodophenyl)-1H-pyr-role-2-carboxylate (24). Compound 24 was prepared by a procedure similar to that used for compound 22. The yield was 49% in two steps. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) $\delta 9.48(\mathrm{~s}, 1 \mathrm{H})$, $7.74(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.14 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.00$ $(\mathrm{m}, 3 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}\right) \delta 161.2,139.7,136.4,135.9,132.6$, $132.2,130.0,129.5,129.3,128.5,127.1,125.5,120.42,120.39$, 93.3, 60.6, 14.1.
(S)-Ethyl 4-(4-Chlorophenyl)-1-[2-(2,2-dimethyl-1,3-di-oxolan-4-yl)ethyl]-3-(3-iodophenyl)-1H-pyrrole-2-carboxylate (25). Compound 25 was prepared in 87% yield from 24 by a procedure similar to that used with compound $23 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) $\delta 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.16$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-6.97(\mathrm{~m}, 5 \mathrm{H}), 4.63-4.56$ $(\mathrm{m}, 1 \mathrm{H}), 4.46-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.03(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{t}, \mathrm{J}=$ $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.47$ ($\mathrm{s}, 3 \mathrm{H}$), $1.38(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}\right) \delta 161.2,139.7,138.1,135.6,132.6,131.9$, 129.7, 129.4, 129.3, 128.4, 126.5, 123.0, 119.9, 93.3, 73.1, 69.1, 60.0, 46.8, 35.5, 27.1, 25.7, 13.8; ESI MS $m / z 580.1$ $(\mathrm{M}+\mathrm{H})^{+}$.
(S)-4-(4-Chlorophenyl)-1-[2-(2,2-dimethyl-1,3-dioxo-lan-4-yl)ethyl]-3-(3-iodophenyl)-N-[3-(4-methylpipera-zin-1-yl)propyl]-1H-pyrrole-2-carboxamide (26). Potassium hydroxide $(0.71 \mathrm{~g}, 12.6 \mathrm{mmol})$ was added to a solution of $25(2.44 \mathrm{~g}, 4.2 \mathrm{mmol})$ in a mixture of THF $/ \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ ($1: 1: 1,30 \mathrm{~mL}$) and the solution was refluxed until no starting material was detectable by TLC. After being cooled, the reaction was neutralized with 1 M HCl and the compound was extracted with EtOAc. The EtOAc solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuum to produce the crude acid, which was used directly in the next step without purification. A solution of this acid, 1-(3-aminopropyl)-4-methylpiperazine ($0.86 \mathrm{~g}, 5.5 \mathrm{mmol}$), EDCI (1.5 g 6.3 mmol), HOBt ($1.0 \mathrm{~g}, 6.3 \mathrm{~mol}$), and N, N-diisopropylethylamine (1.46 $\mathrm{mL}, 8.4 \mathrm{mmol})$ in DCM $(15 \mathrm{~mL})$ was stirred for 8 h and then concentrated. The residue was purified by flash chromatography on silica gel to afford 26 ($2.26 \mathrm{~g}, 78 \%$ in two steps). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) $\delta 7.66-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.13(\mathrm{~m}$, $3 \mathrm{H}), 7.05(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.93(\mathrm{~m}, 3 \mathrm{H}), 5.59(\mathrm{t}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.11-$ $4.00(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.19(\mathrm{~m}, 2 \mathrm{H})$, 2.35-1.97 (m, 15H), 1.49-1.43(m, 5H), $1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) $\delta 161.5,139.3,137.0,136.5,132.8$, 131.8, 130.4, 129.9, 129.2, 128.4, 124.3, 124.1, 123.1, 122.1, 94.6, 73.2, 69.1, 55.8, 55.0, 53.0, 46.2, 46.0, 38.0, 35.7, 27.0, 26.1, 25.7; ESI MS $m / z 691.6(\mathrm{M}+\mathrm{H})^{+}$.

4-(4-Chlorophenyl)-1-[(S)-3,4-dihydroxybutyl]-3-\{3-[4-(4-\{[(4-\{[(S)-4-(dimethylamino)-1-(phenylthio)but-2-yl]-amino\}-3-nitrophenyl)sulfonyl]carbamoyl\}phenyl)-piperazin-1-yl]phenyl\}-N-[3-(4-methylpiperazin-1-yl)-propyl]-1H-pyrrole-2-carboxamide (6). $\mathrm{Pd}(\mathrm{dba})_{2}(3.5 \mathrm{mg}$, 0.006 mmol), tri-tert-butylphosphine (1 M in toluene, $4.8 \mu \mathrm{~L}$), and sodium tert-butoxide ($18 \mathrm{mg}, 0.18 \mathrm{mmol}$) were added to a stirred slurry of $26(83 \mathrm{mg}, 0.12 \mathrm{mmol})$ and $27(88 \mathrm{mg}, 0.14$ mmol) in a mixture of toluene/DMF ($1: 1,4 \mathrm{~mL}$) at room temperature under N_{2}. The mixture was heated to $70^{\circ} \mathrm{C}$ and monitored by thin-layer chromatography. After complete consumption of starting materials, the reaction mixture was filtered through Celite and concentrated. The residue was resolved in MeOH $(5 \mathrm{~mL})$ and treated with 0.2 mL of HCl solution (4 M in dioxane) for 10 min , and then the solvent was removed in vacuum. Purification of the residue by HPLC afforded $6(39 \mathrm{mg}$, $29 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.66(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.93(\mathrm{dd}, J=2.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.29-6.95(\mathrm{~m}, 15 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.32(\mathrm{~m}, 11 \mathrm{H})$, $3.24-3.08(\mathrm{~m}, 14 \mathrm{H}), 2.84(\mathrm{~s}, 6 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{t}, \mathrm{J}=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.27-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.03-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.75$ $(\mathrm{m}, 1 \mathrm{H}), 1.66-1.61(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 167.2, 165.4, 155.8, 152.1, 148.5, 137.2, 136.2, 135.6, 135.0, $132.5,132.2,131.5,130.6,130.4,130.1,129.7,127.8,127.5$, 126.8, 126.0, 124.9, 123.7, 123.5, 121.7, 119.7, 116.5, 115.7, 114.8, 70.2, 67.3, 55.9, 55.4, 53.0, 52.4, 50.7, 50.2, 48.0, 46.2, 43.6, 43.5, 39.3, 37.6, 36.4, 30.1, 25.9; ESI MS $m / z 1135.6$ $(M+H)^{+}$.
t-Butyl 4-[4-(4-Fluoro-3-nitrophenyIsulfonamido)-phenyl]piperazine-1-carboxylate (28). 4-Fluoro-3-nitro-benzene-1-sulfonyl chloride ($312 \mathrm{mg}, 1.3 \mathrm{mmol}$) was added to t-butyl 4-(4-aminophenyl)piperazine-1-carboxylate (360 mg , $1.3 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then concentrated under vacuum. The residue was purified by flash chromatography on silica gel to afford $28(474 \mathrm{mg}, 76 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) $\delta 8.43$ (dd, $J=2.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.59-3.56$ (m, 4H), 3.13-3.10 (m, 4H), 1.49 (s, 9H); ESI MS m/z 480.9 $(\mathrm{M}+\mathrm{H})^{+}$.
(R)-4-\{[4-(Dimethylamino)-1-(phenylthio)but-2-yl]-amino\}-3-nitro- N-[4-(piperazin-1-yl)phenyl]benzenesulfonamide (15). DIEA ($70 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) was added to a solution of $28(100 \mathrm{mg}, 0.21 \mathrm{mmol})$ and $(R)-N^{1}, N^{1}$-dimethyl-4-phenylthio) butane-1,3-diamine ($47 \mathrm{mg}, 0.21 \mathrm{mmol}$) in DMF. The solution was stirred overnight and then concentrated. The residue was resolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and treated with HCl solution (4 M in dioxane, 4 mL), which was stirred for 5 h and then concentrated. This residue was purified by HPLC to afford 15 ($170 \mathrm{mg}, 81 \%$ over two steps). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.24(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=2.2,9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.87(\mathrm{~m}, 8 \mathrm{H}), 4.09-4.07$ $(\mathrm{m}, 1 \mathrm{H}), 3.37-3.27(\mathrm{~m}, 10 \mathrm{H}), 3.21-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.82$ (s, 6H), 2.24-2.14 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 149.3, 148.0, 136.2, 134.4, 132.1, 132.0, 131.6, 130.1, 128.0, 127.8, 127.5, 124.4, 118.8, 116.3, 55.9, 52.4, 47.9, 44.7, 43.5, 39.5, 30.1; ESI MS $m / z 585.7(\mathrm{M}+\mathrm{H})^{+}$.

4-(4-Chlorophenyl)-1-[(S)-3,4-dihydroxybutyl]-3-(3-\{4-[4-(4-\{[(R)-4-(dimethylamino)-1-(phenylthio)but-2-yl]-amino\}-3-nitrophenylsulfonamido)phenyl]piperazin-1-yl\}-phenyl)- N -[3-(4-methylpiperazin-1-yl)propyl]-1H-pyrrole-2-carboxamide (7). Compound 7 was prepared in 24% yield from compounds 15 and 26 by a similar procedure as that used to prepare $\mathrm{BM}-977 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.30(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=2.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18-6.98(\mathrm{~m}, 15 \mathrm{H}), 6.91(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}$, $1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.08$ $(\mathrm{m}, 1 \mathrm{H}), 3.55-3.32(\mathrm{~m}, 11 \mathrm{H}), 3.21-3.15(\mathrm{~m}, 14 \mathrm{H}), 2.84(\mathrm{~s}$, $3 \mathrm{H}), 2.83(\mathrm{~s}, 6 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.25-1.99(\mathrm{~m}, 3 \mathrm{H})$, $1.78-1.64(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 165.4, 151.7, 147.9, 137.2, 136.2, 135.0, 134.5, 132.6, 132.2, 131.6, 130.7, 130.5, 130.2, 129.3, 129.2, 128.0, 127.9, 127.7, 126.7, $126.1,124.8,124.3,124.1,123.5,120.0,118.8,116.8,116.2$, $115.8,70.2,67.2,55.9,55.4,53.1,52.4,51.0,50.7,50.5,46.2$, 43.7, 43.5, 39.6, 37.7, 36.4, 30.1, 25.9; ESI MS $m / z 1107.7$ $(\mathrm{M}+\mathrm{H})^{+}$.
(R)-N-(4-\{4-[(4'-Chloro-[1, 1^{\prime}-biphenyl]-2-yl)methyl]-piperazin-1-yl\}phenyl)-4-\{[4-(dimethylamino)-1-(phenyl-thio)but-2-yl]amino\}-3-nitrobenzenesulfonamide (13). Compound 15 ($58.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) and 4'-chloro-[$1,11^{\prime}$ 'biphenyl]-2-carbaldehyde ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$) were mixed in 1,2 -dichloroethane (5 mL) and then treated with sodium triacetoxyborohydride ($30 \mathrm{mg}, 0.14 \mathrm{mmol}$). The mixture was stirred at room temperature under N_{2} atmosphere for 24 h until the reactants were consumed. Then the reaction mixture was quenched by adding 1 N NaOH , and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was washed with brine and dried over MgSO_{4}. The solvent was evaporated and purified by HPLC to give 13 ($61 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.39-$ $7.31(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-6.89(\mathrm{~m}, 6 \mathrm{H}), 8.18$
(d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~m} .1 \mathrm{H}), 3.38-3.31(\mathrm{~m}$, $3 \mathrm{H}), 3.21-3.08(\mathrm{~m}, 9 \mathrm{H}), 2.84(\mathrm{~s}, 6 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 148.6,147.9,144.4,139.7,136.2$, 135.3, 134.4, 132.6, 132.3, 132.2, 132.1, 131.6, 131.4, 130.2, 130.1, 130.0, 128.0, 127.8, 127.6, 127.5, 124.3, 118.6, 116.2, 58.0, 55.9, 52.8, 52.4, 47.5, 43.5, 39.6, 30.1; ESI MS $m / z 785.8$ $(\mathrm{M}+\mathrm{H})^{+}$.

4-Fluoro-3-nitro- N-phenylbenzenesulfonamide (29). Compound 29 was prepared in 80% yield by a procedure similar to that used to prepare compound 28. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CCl}_{3} \mathrm{D}\right) \delta 8.51(\mathrm{dd}, J=2.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.97(\mathrm{~m}, 1 \mathrm{H})$, 7.42-7.30 (m, 3H), 7.14-7.11 (m, 2H), $6.92(\mathrm{~s}, 1 \mathrm{H})$.
(R)-4-\{[4-(Dimethylamino)-1-(phenylthio)but-2-yl]-amino\}-3-nitro- N-phenylbenzenesulfonamide (14). Compound 14 was prepared from 29 by a similar procedure as that used for compound 15, in 83% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.38(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.62 (dd, $J=2.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18-6.97$ $(\mathrm{m}, 8 \mathrm{H}), 6.90$, $(\mathrm{d}, \mathrm{J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.40-$ $3.33(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.09(\mathrm{~m}, 3 \mathrm{H}), 2.85(\mathrm{~s}, 6 \mathrm{H}), 2.31-2.11(\mathrm{~m}$, 2 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 147.9,139.0,136.1$, 134.4, 132.3, 131.5, 130.3, 128.0, 127.9, 127.7, 125.8, 121.8, 116.1, 55.9, 52.3, 43.5, 39.4, 30.1; ESI MS $m / z 501.7(\mathrm{M}+\mathrm{H})^{+}$.
(R)-N-[(4-\{[4-(Dimethylamino)-1-(phenylthio)butan-2-yl]amino\}-3-nitrophenyl)sulfonyl]-4-ethynylbenzamide (30). A suspension of 5 ($400 \mathrm{mg}, 0.94 \mathrm{mmol}$), 4-ethynylbenzoic acid ($138 \mathrm{mg}, 0.94 \mathrm{mmol}$), (dimethylamino) pyridine (DMAP; $230 \mathrm{mg}, 1.88 \mathrm{mmol})$, and $\operatorname{EDCI}(362 \mathrm{~g}, 1.88 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ was stirred at room temperature for 8 h . The reaction mixture was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 8 \mathrm{~mL})$ and concentrated. The crude residue was purified by HPLC to provide 30 ($365 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $8.66(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.52 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.89(\mathrm{~m}$, $4 \mathrm{H}), 4.16-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 1 \mathrm{H}), 3.40-3.34(\mathrm{~m}, 1 \mathrm{H})$, $3.24-3.13(\mathrm{~m}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 6 \mathrm{H}), 2.30-2.14(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 165.5,147.2,134.8,134.1,132.0$, 131.6, 130.7, 130.1, 128.7, 128.5, 128.0, 127.4, 126.5, 125.4, 114.6, 81.8, 81.0, 54.5, 51.1, 42.2, 38.0, 28.7; ESI MS $m / z 553.8$ $(\mathrm{M}+\mathrm{H})^{+}$.

4-(4-Chlorophenyl)-1-[(S)-3,4-dihydroxybutyl]-3-\{3-[(4-\{[(4-\{[(R)-4-(dimethylamino)-1-(phenylthio)but-2-yl]-amino\}-3-nitrophenyl)sulfonyl]carbamoyl\}phenyl)-ethynyl]phenyl\}-N-[3-(4-methylpiperazin-1-yl)propyl]1 H -pyrrole-2-carboxamide (9). CuI ($6.9 \mathrm{mg}, 0.036 \mathrm{mmol}$) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13.9 \mathrm{mg}, 0.012 \mathrm{mmol})$ were added to a solution of 26 ($83 \mathrm{mg}, 0.12 \mathrm{mmol}$), $30(66 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(50 \mu \mathrm{~L}, 0.36 \mathrm{mmol})$ in DMF $(5 \mathrm{~mL})$ at room temperature under nitrogen. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 3 h and then filtered through Celite, washed with 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated under reduced pressure. The residue was resolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and treated with 0.2 mL of HCl solution (4 M in dioxane) for 10 min , and then the solvent was removed in vacuum. Purification of the residue by HPLC afforded 9 ($97 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.70$ (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.01(\mathrm{~m}, 12 \mathrm{H}), 4.37-4.29(\mathrm{~m}, 2 \mathrm{H})$, 4.19-4.17 (m, 1H), 3.56-3.39 (m, 8H), 3.27-3.13 (m, 9H), $2.87-2.76(\mathrm{~m}, 11 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.01(\mathrm{~m}, 1 \mathrm{H})$, $1.75-1.70(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 166.9$, 165.4, 148.6, 136.8, 136.2, 135.5, 134.8, 134.7, 132.9, 132.8, $132.6,132.2,131.5,130.6,130.1,129.9,129.5,129.4,129.3$,
127.9, 126.9, 126.8, 125.0, 124.7, 123.9, 123.5, 93.4, 89.6, 70.2, 67.3, 55.9, 55.5, 52.6, 52.5, 50.4, 46.1, 43.6, 39.4, 37.7, 36.4, 30.1, 25.7; ESI MS $m / z 1075.8(\mathrm{M}+\mathrm{H})^{+}$.
(R)-4-\{[4-(Dimethylamino)-1-(phenylthio)but-2-yl]-amino\}- N-(4-ethynylphenyl)-3-nitrobenzenesulfonamide (31). Compound 31 was prepared by a similar procedure to that used for compound 30 in 80% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.10-6.93(\mathrm{~m}, 4 \mathrm{H}), 4.13-$ $4.12(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.14(\mathrm{~m}, 3 \mathrm{H}), 2.88$ (s , $6 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 146.7, 138.0, 134.7, 132.9, 132.7, 130.9, 130.1, 128.7, 126.6, 126.5, 125.9, 119.6, 118.3, 114.9, 82.4, 77.3, 54.5, 51.0, 42.1, 38.0, 28.7; ESI MS $m / z 526.0(\mathrm{M}+\mathrm{H})^{+}$.

4-(4-Chlorophenyl)-1-[(S)-3,4-dihydroxybutyl]-3-(3-\{[4-(4-\{[(R)-4-(dimethylamino)-1-(phenylthio)but-2-yl]-amino\}-3-nitrophenylsulfonamido)phenyl]ethynyl\}-phenyl)- N-[3-(4-methylpiperazin-1-yl)propyl]-1H-pyr-role-2-carboxamide (10). Compound 10 was prepared from 31 by a similar procedure as that for 9 in 79% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.39(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=$ $2.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H})$, 7.15-7.10 (m, 8H), 7.01-6.89 (m, 6H), 4.37-4.21 (m, 2H), $4.09-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.43(\mathrm{~m}, 2 \mathrm{H})$, $3.33-3.31(\mathrm{~m}, 5 \mathrm{H}), 3.24-3.08(\mathrm{~m}, 9 \mathrm{H}), 2.82(\mathrm{~s}, 9 \mathrm{H}), 2.72-$ $2.68(\mathrm{~m}, 2 \mathrm{H}), 2.24-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.63(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 165.4,148.1,139.4,136.6,136.2$, 134.8, 134.4, 134.3, 133.7, 132.7, 132.2, 132.0, 131.5, 131.2, $130.5,130.1,129.8,129.3,128.0,127.9,127.4,126.7,125.2$, 124.7, 124.6, 123.5, 121.1, 120.1, 116.3, 90.2, 90.0, 70.2, 67.3, $55.9,55.4,52.7,52.3,50.5,46.1,43.6,43.5,39.4,37.6,36.4$, 30.1, 25.7; ESI MS $m / z 1048.4(\mathrm{M}+\mathrm{H})^{+}$.
(S)-3-(3-Azidophenyl)-4-(4-chlorophenyl)-1-[2-(2,2-di-methyl-1,3-dioxolan-4-yl)ethyl]-N-[3-(4-methylpipera-zin-1-yl)propyl]-1H-pyrrole-2-carboxamide (32). A mixture of $26(300 \mathrm{mg}, 0.43 \mathrm{mmol})$, sodium azide $(42 \mathrm{mg}, 0.65$ mmol), $\mathrm{CuI}(8.3 \mathrm{mg}, 0.043 \mathrm{mmol})$, l-proline ($10 \mathrm{mg}, 0.087$ mmol), and $\mathrm{NaOH}(3.5 \mathrm{mg}, 0.087 \mathrm{mmol})$ in DMSO $(4 \mathrm{~mL})$ in a sealed tube was heated to $70^{\circ} \mathrm{C}$ under N_{2}. After the reaction was completed, the cooled mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, and the aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel to afford $32(134 \mathrm{mg}, 51 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) $\delta 7.35-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 4 \mathrm{H}), 5.54$ (br s, 1H), 4.47-4.43 (m, 1H), 4.38-4.29 (m, 1H), 4.10-4.08 $(\mathrm{m}, 1 \mathrm{H}), 4.03-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-$ $3.15(\mathrm{~m}, 2 \mathrm{H}), 2.36-1.96(\mathrm{~m}, 15 \mathrm{H}), 1.42-1.40(\mathrm{~m}, 5 \mathrm{H}), 1.32$ ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) $\delta 161.5,140.6,136.8$, 132.8, 131.8, 130.2, 129.1, 128.4, 127.2, 124.1, 123.8, 122.2, 121.2, 118.1, 108.9, 73.2, 69.1, 55.7, 54.9, 52.7, 46.3, 45.8, 37.8, 35.7, 27.0, 26.1, 25.6; ESI MS $m / z 606.8(\mathrm{M}+\mathrm{H})^{+}$.

4-(4-Chlorophenyl)-1-[(S)-3,4-dihydroxybutyl]-3-(3-\{4-[4-(4-\{[(R)-4-(dimethylamino)-1-(phenylthio)but-2-yl]-amino\}-3-nitrophenylsulfonamido)phenyl]-1H-1,2,3-tri-azol-1-yl\}phenyl)- N -[3-(4-methylpiperazin-1-yl)propyl]-1H-pyrrole-2-carboxamide (8). Compounds 32 (90 mg , $0.15 \mathrm{mmol})$ and $31(78 \mathrm{mg}, 0.15 \mathrm{mmol})$ were suspended in a $1: 2$ mixture of $\mathrm{H}_{2} \mathrm{O}$ and $t-\mathrm{BuOH}(9 \mathrm{~mL})$, and then a solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(3.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ and (+)-sodium L-ascorbate $(8.8 \mathrm{mg}, 0.045 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added.

The resulting mixture was stirred at room temperature overnight and then was diluted with water $(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was resolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and treated with HCl solution (4 M in dioxane, 0.2 mL) for 10 min , and then the solvent was removed in vacuum. Purification of the residue by HPLC afforded $8(97 \mathrm{mg}, 75 \%) .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-$ $7.70(\mathrm{~m}, 4 \mathrm{H}), 7.62(\mathrm{dd}, J=2.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.01(\mathrm{~m}, 7 \mathrm{H}), 6.94-6.88$ $(\mathrm{m}, 4 \mathrm{H}), 4.35-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.07-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.34$ $(\mathrm{m}, 9 \mathrm{H}), 3.20-3.11(\mathrm{~m}, 8 \mathrm{H}), 2.84-2.80(\mathrm{~m}, 11 \mathrm{H}), 2.19-2.15$ $(\mathrm{m}, 3 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 165.4,148.9,148.1,139.3,138.3,138.0,136.1,134.7,134.3$, 132.9, 132.4, 132.2, 131.5, 131.0, 130.8, 130.0, 129.4, 128.1, 127.8, 127.7, 127.4, 127.1, 124.8, 124.5, 123.6, 123.4, 121.9, 120.1, 119.9, 116.4, 70.2, 67.3, 55.9, 55.5, 52.4, 50.3, 46.1, 43.5, 39.4, 37.7, 36.4, 30.1, 25.7; ESI MS $m / z 1091.4$ $(M+H)^{+}$.

Ethyl 4-(4-Chlorophenyl)-3-(4-iodophenyl)-1H-pyr-role-2-carboxylate. Compound 33 was prepared by a similar procedure as was used to prepare 24 in 58% yield in two steps. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) $\delta 9.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04-7.01(\mathrm{~m}, 4 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) δ 161.0, 136.8, 133.7, 132.7, 132.2, 129.6, 128.5, 127.9, 125.5, 120.4, 120.2, 92.9, 60.5, 14.1.
(S)-Ethyl 4-(4-Chlorophenyl)-1-[2-(2,2-dimethyl-1,3-di-oxolan-4-yl)ethyl]-3-(4-iodophenyl)-1H-pyrrole-2-carboxylate (34). Compound 34 was prepared from 33 by a procedure similar to that used for 25 in 90% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}\right) \delta 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 4 \mathrm{H}), 4.62-4.55(\mathrm{~m}, 1 \mathrm{H})$, 4.46-4.36 (m, 1H), 4.15-4.03 (m, 4H), 3.63-3.57 (m, 1H), 2.21-2.12 (m, 1H), 2.08-1.94 (m, 1H), $1.47(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}$, $3 \mathrm{H}), 0.99(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}\right) \delta$ 161.2, 136.7, 135.4, 132.6, 131.9, 130.0, 129.3, 128.4, 126.4, 123.0, 119.9, 109.1, 92.3, 73.1, 69.0, 60.0, 46.8, 35.5, 27.0, 25.6, 13.7.
(S)-Ethyl 4-(4-Chlorophenyl)-1-[2-(2,2-dimethyl-1,3-di-oxolan-4-yl)ethyl]-3-\{4-[4-(4-nitrophenyl)piperazin-1-yl]phenyl\}-1H-pyrrole-2-carboxylate (35). Compound 34 $(380 \mathrm{mg}, 0.66 \mathrm{mmol}), 1$-(4-nitrophenyl) piperazine $(271 \mathrm{mg}$, $1.31 \mathrm{mmol})$, $\mathrm{CuI}(12 \mathrm{mg}, 0.066 \mathrm{mmol})$, $\mathrm{L}-\mathrm{proline}(15 \mathrm{mg}$, $0.13 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(181 \mathrm{mg}, 1.31 \mathrm{mmol})$ were dissolved in 5 mL of DMSO. This mixture was heated to $80^{\circ} \mathrm{C}$ for 2 h under nitrogen. After the solution was cooled, saturated ammonium chloride solution was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over sodium sulfate, and concentrated. Purification of the residue by flash chromatography on silica gel afforded 35 $(354 \mathrm{mg}, 82 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}\right) \delta 8.15$ ($\mathrm{d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.90-6.87$ $(\mathrm{m}, 4 \mathrm{H}), 4.63-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.04$ $(\mathrm{m}, 4 \mathrm{H}), 3.62-3.57(\mathrm{~m}, 5 \mathrm{H}), 3.39-3.37(\mathrm{~m}, 4 \mathrm{H}), 2.21-2.15$ $(\mathrm{m}, 1 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.02$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) $\delta 161.5$, 154.7, 149.4, 138.6, 133.2, 131.5, 131.1, 129.3, 128.3, 127.5, 126.4, 126.0, 123.1, 120.0, 115.3, 112.7. 109.1, 73.2, 69.1, 59.8, 48.9, 47.1, 46.9, 35.6, 27.0, 25.6, 13.8; ESI MS $m / z 659.8$ $(\mathrm{M}+\mathrm{H})^{+}$.
(S)-4-(4-Chlorophenyl)-1-[2-(2,2-dimethyl-1,3-dioxo-lan-4-yl)ethyl]-N-[3-(4-methylpiperazin-1-yl)propyl]-3-\{4-[4-(4-nitrophenyl)piperazin-1-yl]phenyl\}-1H-pyrrole-2-carboxamide (36). Compound 36 was prepared from 35 in 85% yield in two steps by a procedure similar to that used for 26. ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}\right) \delta 8.14(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.17-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 7 \mathrm{H}), 5.61(\mathrm{t}, J=5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.09(\mathrm{~m}$, $1 \mathrm{H}), 4.05-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.53(\mathrm{~m}, 5 \mathrm{H}), 3.41-3.40(\mathrm{~m}$, $4 \mathrm{H}), 3.18(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-1.98(\mathrm{~m}, 15 \mathrm{H}), 1.48-1.40$ $(\mathrm{m}, 5 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) $\delta 161.8$, 154.5, 149.8, 138.7, 133.4, 131.7, 131.4, 129.1, 128.3, 126.0, $125.8,125.0,124.2,123.5,122.3,116.0,112.8,108.9,73.4,69.1$, 55.8, 55.0, 53.0, 48.2, 47.0, 46.5, 45.9, 37.5, 35.7, 27.0, 26.4, 25.7; ESI MS $m / z 770.4(\mathrm{M}+\mathrm{H})^{+}$.

4-(4-Chlorophenyl)-1-[(S)-3,4-dihydroxybutyl]-3-(4-\{4-[4-(4-\{[(R)-4-(dimethylamino)-1-(phenylthio)but-2-yl]-amino\}-3-nitrophenylsulfonamido)phenyl]piperazin-1-yl\}phenyl)- N -[3-(4-methylpiperazin-1-yl)propyl]-1H-pyr-role-2-carboxamide (12). $\mathrm{Pd}-\mathrm{C}(10 \% ; 20 \mathrm{mg})$ was added to a solution of compound $36(124 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \mathrm{~mL})$ and $\mathrm{MeOH}(3 \mathrm{~mL})$. The solution was stirred under 1 atm of H_{2} at room temperature for 0.5 h before it was filtered through Celite and concentrated. The resulting aniline was used in the next step without purification. To this aniline in pyridine (5 mL) was added 4-fluoro-3-nitrobenzene-1-sulfonyl chloride ($39 \mathrm{mg}, 0.16 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The pyridine was removed under vacuum and the residue was purified by flash chromatography on silica gel to give (S)-4-(4-chlorophenyl)-1-[2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl $]-3-\{4-[(2-\{[4-(4$-fluoro-3-nitrophenylsulfonamido)phenyl]amino\}ethyl)amino]phenyl $\}-N$-[3-(4-methylpiperazin-1-yl)-propyl]-1H-pyrrole-2-carboxamide. N, N-Diisopropylethylamine (DIEA; $56 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$) was added to a solution of this sulfonamide and (R)- N^{1}, N^{1}-dimethyl-4-(phenylthio)butane-1,3-diamine ($39 \mathrm{mg}, 0.16 \mathrm{mmol}$) in DMF. The solution was stirred overnight and concentrated. The residue was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and treated with HCl solution (4 M in dioxane, 0.2 mL) for 10 min , and then the solvent was removed in vacuum. Purification of the residue by HPLC afforded $\mathbf{1 2}$ ($94 \mathrm{mg}, 51 \%$ in four steps). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $8.36(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.04(\mathrm{~m}, 18 \mathrm{H})$, $6.97(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.13(\mathrm{~m}$, $1 \mathrm{H}), 3.59-3.37(\mathrm{~m}, 17 \mathrm{H}), 3.26-3.21(\mathrm{~m}, 8 \mathrm{H}), 2.90-2.82(\mathrm{~m}$, $11 \mathrm{H}), 2.30-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 165.6,147.9,136.2,135.1,134.4,132.7$, $132.5,132.3,131.6,130.5,130.1,129.2,128.0,127.9,127.7$, 126.3, 125.9, 125.1, 124.2, 123.7, 119.2, 117.9, 116.2, 70.3, 67.3, 55.9, 55.5, 52.5, 52.4, 51.4, 50.6, 50.4, 46.3, 43.6, 43.5, 39.5, 37.5, 36.5, 30.1, 25.7; ESI MS $m / z 1107.7(\mathrm{M}+\mathrm{H})^{+}$.
(S)-Ethyl 4-(4-Chlorophenyl)-1-[2-(2,2-dimethyl-1,3-di-oxolan-4-yl)ethyl]-3-[3-(\{2-[(4-nitrophenyl)amino]ethyl\}amino) phenyl]-1H-pyrrole-2-carboxylate (37). Compound 37 was prepared in 78% yield from 26 by a procedure similar to that used for $35 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}\right) \delta 8.07$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 3 \mathrm{H})$, $6.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.58-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.35(\mathrm{~m}$, $1 \mathrm{H}), 4.11-3.99(\mathrm{~m}, 4 \mathrm{H}), 3.59(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{br} \mathrm{s}$, $4 \mathrm{H}), 2.18-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H})$, $1.38(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CCl}_{3} \mathrm{D}\right) \delta 161.5,153.3,146.9,138.1,136.9,133.1,131.6,129.2$, 128.6, 128.2, 126.4, 126.2, 122.8, 121.1, 120.0, 115.3, 111.9,
109.1, 73.2, 69.1, 59.8, 46.8, 43.0, 42.5, 35.5, 27.0, 25.6, 13.7; ESI MS $m / z 633.4(\mathrm{M}+\mathrm{H})^{+}$.

4-(4-Chlorophenyl)-1-[(S)-3,4-dihydroxybutyl]-3-\{3-[(2-\{[4-(4-\{[(R)-4-(dimethylamino)-1-(phenylthio)but-2-yl]amino\}-3-nitrophenylsulfonamido)phenyl]amino\}-ethyl)amino]phenyl\}-N-[3-(4-methylpiperazin-1-yl)-propyl]-1H-pyrrole-2-carboxamide (11). Compound 11 was prepared from 37 in 40% yield over six steps by a procedure similar to that used for compound 12. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.35(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.33-6.94 (m, 14H), 6.78-6.61 (m, 5H), 4.45-4.31 (m, 2H), $4.15-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.39(\mathrm{~m}, 8 \mathrm{H}), 3.28-3.17(\mathrm{~m}, 13 \mathrm{H})$, $2.90-2.88(\mathrm{~m}, 9 \mathrm{H}), 2.69-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.85-$ $1.82(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.68(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) 165.2, 147.9, 137.6, 136.2, 135.0, 134.5, 132.5, 132.3, 131.6, 130.9, $130.3,130.1,129.2,128.02,127.96,127.7,125.9,125.1,125.0,123.4$, 116.2, 70.2, 67.3, 55.9, 55.4, 53.0, 52.3, 50.7, 46.4, 43.7, 43.5, 39.6, 37.6, 36.4, 30.1, 25.8; ESI MS $m / z 1081.6(\mathrm{M}+\mathrm{H})^{+}$.

Ethyl 4-(4-Chlorophenyl)-3-(3-iodophenyl)-1-methyl-1H-pyrrole-2-carboxylate (38). $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($1.83 \mathrm{~g}, 13.3 \mathrm{mmol}$) and $\mathrm{MeI}(1.89 \mathrm{~g}, 13.3 \mathrm{mmol})$ were added to a solution of $24(3.0 \mathrm{~g}$, $6.6 \mathrm{mmol})$ in DMF $(40 \mathrm{~mL})$. The reaction mixture was stirred for 4 h under nitrogen at room temperature. Then the reaction was diluted with water $(40 \mathrm{~mL})$ and extracted with EtOAc $(2 \times 60 \mathrm{~mL})$. The combined organics were washed with water $(60 \mathrm{~mL})$ and brine $(60 \mathrm{~mL})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, the residue was purified by flash chromatography on silica gel to provide $38(2.88 \mathrm{~g}, 93 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}\right) \delta$ $7.64(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dt}, J=1.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.12$ $(\mathrm{m}, 2 \mathrm{H}), 7.07-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.91(\mathrm{~m}, 4 \mathrm{H}), 4.06(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}\right) \delta 161.6,139.8,138.2,135.7,132.8,132.0,129.42$, 129.39, 129.0, 128.5, 127.0, 122.9, 121.0, 93.4, 60.1, 37.8, 14.0 .

Ethyl 4-(4-Chlorophenyl)-1-methyl-3-\{3-[4-(4-nitrophenyl)piperazin-1-yl]phenyl\}-1H-pyrrole-2-carboxylate (39). Compound 39 was prepared in 83% yield by a procedure similar to that used for compound 35. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}\right) \delta 8.12(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.13$ ($\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.90-6.79$ $(\mathrm{m}, 5 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.51(\mathrm{~m}, 4 \mathrm{H})$, $3.27-3.24(\mathrm{~m}, 4 \mathrm{H}), 1.01(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CCl}_{3} \mathrm{D}\right) \delta 161.7,154.7,150.1,138.5,136.7,133.2,131.5,131.0,129.2$, 128.4, 128.2, 126.6, 125.9, 123.1, 122.7, 121.0, 119.0, 114.9, 112.7, 59.8, 49.0, 46.9, 37.6, 13.8; ESI MS $m / z 545.8(\mathrm{M}+\mathrm{H})^{+}$.
(R)-4-(4-Chlorophenyl)-3-(3-\{4-[4-(4-\{[4-(dimethylamino)-1-(phenylthio)but-2-yl]amino\}-3-nitrophenylsulfonamido)-phenyl]piperazin-1-yl\}phenyl)-1-methyl-1H-pyrrole-2-carboxylic acid (20). Compound 20 was prepared from 38 in 49\% yield in four steps by a procedure similar to that used for $12 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.29(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (dd, $J=2.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-6.89(\mathrm{~m}, 18 \mathrm{H})$, $4.08-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.30(\mathrm{~m}, 9 \mathrm{H}), 3.20-3.14$ $(\mathrm{m}, 3 \mathrm{H}), 2.82(\mathrm{~s}, 6 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 164.3,147.9,138.9,136.2,134.8,134.4,132.8,132.6$, 132.2, 131.7, 131.6, 130.6, 130.1, 130.0, 129.2, 128.7, 128.3, 128.0, 127.9, 127.6, 124.1, 124.0, 122.4, 122.0, 119.1, 117.8, 116.2, 55.9, $52.8,52.4,50.6,43.5,39.5,38.1,30.1$; ESI MS $m / z 895.1(\mathrm{M}+\mathrm{H})^{+}$.
(R)-4-(4-Chlorophenyl)-3-(3-\{4-[4-(4-\{[4-(dimethylamino)-1-(phenylthio)but-2-yl]amino\}-3-nitrophenylsulfonamido)-phenyl]piperazin-1-yl\}phenyl)-1-methyl-N-[3-(4-methylpi-perazin-1-yl)propyl]-1H-pyrrole-2-carboxamide (16). A mixture of 20 ($76 \mathrm{mg}, 0.085 \mathrm{mmol}$), 1-(3-aminopropyl)-4methylpiperazine ($20 \mathrm{mg}, 0.127 \mathrm{mmol}$), EDCI (24.5 mg ,
$0.127 \mathrm{mmol})$, HOBt $(16.4 \mathrm{mg}, 0.127 \mathrm{~mol})$, and DIEA ($44 \mu \mathrm{~L}$, $0.25 \mathrm{mmol})$ in DCM (5 mL) was stirred for 8 h and then concentrated. The residue was purified by HPLC to provide 16 $(74 \mathrm{mg}, 84 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.30(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=2.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.16-6.89(\mathrm{~m}, 16 \mathrm{H}), 6.82-6.77(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.06(\mathrm{~m}$, $1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.28(\mathrm{~m}, 6 \mathrm{H}), 3.25-3.09(\mathrm{~m}, 16 \mathrm{H})$, $2.83(\mathrm{~s}, 9 \mathrm{H}), 2.62-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.65-$ $1.61(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 165.1, 151.6, 147.9, 137.4, 136.2, 135.0, 134.4, 132.5, 132.2, 131.6, 130.7, 130.4, 130.1, 129.2, 128.0, 127.9, 127.6, 126.7, 126.4, 125.8, 124.2, 123.3, 120.1, 118.9, 116.9, 116.2, 55.9, 55.4, 52.9. 52.4, 51.1, 50.6, 50.5, 43.6, 43.5, 39.5, 37.5, 36.3, 30.1, 25.9; ESI MS $\mathrm{m} / \mathrm{z} 1033.7(\mathrm{M}+\mathrm{H})^{+}$.
(R)-4-(4-Chlorophenyl)-3-(3-\{4-[4-(4-\{[4-(dimethylamino)-1-(phenylthio)but-2-yl]amino\}-3-nitrophenylsulfonamido)-phenyl]piperazin-1-yl\}phenyl)-N,1-dimethyl-1H-pyrrole-2carboxamide (17). A mixture of $20(42 \mathrm{mg}, 0.047 \mathrm{mmol}), 2 \mathrm{M}$ methylamine in THF ($47 \mu \mathrm{M}, 0.094 \mathrm{mmol}$), EDCI $(18.0 \mathrm{mg}$, $0.094 \mathrm{mmol})$, HOBt ($12.1 \mathrm{mg}, 0.094 \mathrm{~mol}$), and DIEA ($25 \mu \mathrm{~L}$, $0.14 \mathrm{mmol})$ in DCM (3 mL) was stirred for 8 h and then concentrated. The residue was purified by HPLC to provide 17 $(36.6 \mathrm{mg}, 86 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.32(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.17-6.99(\mathrm{~m}, 15 \mathrm{H}), 6.90(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H})$, $6.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.45-3.33(\mathrm{~m}, 9 \mathrm{H}), 3.21-3.08(\mathrm{~m}, 3 \mathrm{H}), 2.84(\mathrm{~s}, 6 \mathrm{H}), 3.05(\mathrm{~s}$, $3 \mathrm{H}), 2.25-2.10(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 165.4, 149.9, 148.0, 147.2, 137.4, 136.2, 135.1, 134.4, 133.6, 132.6, 132.3, 131.6, 130.7, 130.6, 130.1, 129.2, 128.0, 127.9, 127.6, 126.9, 125.9, 125.8, 125.6, 124.0, 123.1, 120.8, 119.5, 117.4, 116.2, 55.9, 52.4, 51.4, 43.5, 39.6, 36.2, 30.1, 26.4; ESI MS $m / z 907.6(\mathrm{M}+\mathrm{H})^{+}$.
(R)-N-[4-(4-\{3-[4-(4-Chlorophenyl)-1-methyl-1H-pyr-rol-3-yl]phenyl\}piperazin-1-yl)phenyl]-4-\{[4-(dimethyla-mino)-1-(phenylthio)but-2-yl]amino\}-3-nitrobenzenesulfonamide (18). TFA (0.5 mL) was added to a solution of $20(37 \mathrm{mg}, 0.041 \mathrm{mmol})$ in $\mathrm{DCM}(2 \mathrm{~mL})$. The solution was stirred for 15 min and then evaporated. The residue was purified by HPLC to afford compound 18 ($28 \mathrm{mg}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.30(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=2.2,9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 7.18-6.89(\mathrm{~m}, 17 \mathrm{H}), 6.80(\mathrm{dd}, J=2.3$, $9.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.10-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.30(\mathrm{~m}$, $9 \mathrm{H}), 3.20-3.14(\mathrm{~m}, 3 \mathrm{H}), 2.82(\mathrm{~s}, 6 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 148.0,147.9,139.3,136.3,136.2$, 134.4, 133.0, 132.34, 132.25, 131.6, 131.0, 130.8, 130.1, 129.3, 128.0, 127.9, 127.6, 126.0, 124.1, 123.6, 123.4, 123.2, 123.1, 123.0, 119.7, 119.2, 116.8, 116.2, 55.9, 53.0, 52.4, 50.5, 43.5, 39.5, 36.4, 30.1; ESI MS $m / z 851.6(\mathrm{M}+\mathrm{H})^{+}$.
(R)-Ethyl 4-(4-Chlorophenyl)-3-(3-\{4-[4-(4-\{[4-(dime-thylamino)-1-(phenylthio)but-2-yl]-amino\}-3-nitrophenylsulfonamido)phenyl]piperazin-1-yl\}phenyl)-1-methyl-1H-pyrrole-2-carboxylate (19). A mixture of 20 $(37 \mathrm{mg}, 0.041 \mathrm{mmol}), \mathrm{EtOH}(1 \mathrm{~mL}), N, N^{\prime}$-diisopropylcarbodiimide ($16 \mathrm{mg}, 0.124$ equiv), and 4 -(dimethylamino)pyridine $(1.0 \mathrm{mg}, 0.008 \mathrm{mmol})$ in THF (3 mL) was stirred for 8 h and then concentrated. The residue was purified by HPLC to provide $19(29 \mathrm{mg}, 76 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$), $\delta 8.31$ (d, $J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=2.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17-6.90(\mathrm{~m}, 18 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.31(\mathrm{~m}, 9 \mathrm{H}), 3.21-3.14(\mathrm{~m}, 3 \mathrm{H})$, $2.83(\mathrm{~s}, 6 \mathrm{H}), 2.27-2.11(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 162.9,148.0,139.1,136.2,134.6$,
134.4, 133.3, 132.7, 132.3, 131.6, 130.5, 130.1, 130.0, 129.2, 128.6, 128.0, 127.9, 127.6, 124.0, 123.9, 122.0, 121.9, 119.4, $117.7,116.2,60.9,55.9,52.44,52.37,51.0,43.5,39.5,37.8,30.1$, 14.2; ESI MS m/z $922.8(\mathrm{M}+\mathrm{H})^{+}$.

Ethyl 5-Bromo-4-(4-chlorophenyl)-3-(3-iodophenyl)-1-methyl-1 H-pyrrole-2-carboxylate (40). N -Bromosuccinimide $(0.59 \mathrm{~g}, 3.3 \mathrm{mmol})$ was added in portions to a solution of $24(1.5 \mathrm{~g}, 3.3 \mathrm{mmol})$ in DMF (20 mL) and the resulting mixture was stirred at room temperature for 2 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and extracted into EtOAc $(2 \times 30 \mathrm{~mL})$. The combined organics were washed with water $(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under vacuum, a solution of the residue in DMF $(20 \mathrm{~mL})$ was added to $\mathrm{K}_{2} \mathrm{CO}_{3}(0.92 \mathrm{~g}, 6.6 \mathrm{mmol})$ and MeI ($0.94 \mathrm{~g}, 6.6 \mathrm{mmol}$). This reaction mixture was stirred for 4 h under nitrogen at room temperature. The reaction was diluted with water (20 mL) and extracted into EtOAc $(2 \times$ 30 mL). The combined organics were washed with water $(30 \mathrm{~mL})$ and then brine $(30 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, the residue was purified by flash chromatography on silica gel to provide $40(1.3 \mathrm{~g}, 71 \%$ yield over two steps). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) $\delta 7.61(\mathrm{~s}, 1 \mathrm{H})$, $7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99-6.89(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.05$ $(\mathrm{s}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) $\delta 160.9,139.7,137.2,135.7,132.8,131.7,131.5,130.0,129.7$, 129.1, 128.2, 123.6, 121.7, 111.7, 93.1, 60.3, 35.6, 13.8.

Ethyl 5-Bromo-4-(4-chlorophenyl)-1-methyl-3-\{3-[4-(4-nitrophenyl)piperazin-1-yl]phenyl\}-1H-pyrrole-2-carboxylate (41). Compound 41 was prepared in 74% yield by a procedure similar to that used for compound $35 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}\right) \delta 8.15(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}$, $3 \mathrm{H}), 7.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~s}$, $3 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 4 \mathrm{H}), 3.20-3.17(\mathrm{~m}, 4 \mathrm{H}), 0.99(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) $\delta 161.20,154.7,149.8$, 138.6, 135.6, 132.5, 132.1, 131.9, 131.7, 128.2, 128.1, 125.9, 123.6, 123.1, 121.7, 119.1, 114.9, 112.7, 111.3, 60.1, 48.9, 46.9, 35.5, 13.8; ESI MS $m / z 623.3(\mathrm{M}+\mathrm{H})^{+}$.

Ethyl 4-(4-Chlorophenyl)-1-methyl-3-\{3-[4-(4-nitrophenyl)piperazin-1-yl]phenyl\}-5-[(trimethylsilyl)-ethynyl]-1H-pyrrole-2-carboxylate (42). CuI ($37 \mathrm{mg}, 0.19$ $\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(111 \mathrm{mg}, 0.096 \mathrm{mmol})$ were added to a solution of $41(600 \mathrm{mg}, 0.96 \mathrm{mmol})$, ethynyltrimethylsilane $(473 \mathrm{mg}, 4.8 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL}, 2.9 \mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$ in a sealed tube at room temperature under nitrogen. After being stirred at $80^{\circ} \mathrm{C}$ for 6 h , the reaction mixture was cooled and filtered through Celite, washed with 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel afforded 42 $(160 \mathrm{mg}, 26 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}\right) \delta 8.15(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 3 \mathrm{H}), 6.74(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}$, $3 \mathrm{H}), 3.54-3.51(\mathrm{~m}, 4 \mathrm{H}), 3.24-3.21(\mathrm{~m}, 4 \mathrm{H}), 0.99(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H), 0.26 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) $\delta 161.2,154.7$, 150.0, 138.7, 135.9, 132.1, 130.9, 130.4, 128.4, 127.8, 127.5, 125.9, 123.2, 121.7, 119.7, 119.1, 114.9, 112.7, 103.9, 95.3, 60.1, 49.0, 46.9, 34.9, 13.7, -0.26; ESI MS $m / z 641.9(\mathrm{M}+\mathrm{H})^{+}$.

4-(4-Chlorophenyl)-5-ethynyl-1-methyl-3-\{3-[4-(4-nitrophenyl)piperazin-1-yl]phenyl\}-1H-pyrrole-2-carboxylic acid (43). KOH ($56 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added to a solution of $42(160 \mathrm{mg}, 0.25 \mathrm{mmol})$ in a mixture of dioxane/ $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(1: 1: 1,10 \mathrm{~mL})$ and the solution was refluxed for

2 h . After being cooled, the reaction was neutralized with 1 M HCl and extracted with EtOAc. The EtOAc solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuum. Purification of the residue by flash chromatography on silica gel afforded $43(116 \mathrm{mg}, 86 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}$) $\delta 8.15$ (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 5 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 3 \mathrm{H})$, 6.76-6.73 (m, 2H), $4.06(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.49(\mathrm{~m}, 5 \mathrm{H}), 3.22-3.19$ $(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CCl}_{3} \mathrm{D}\right) \delta 154.7,149.9,138.7$, 134.9, 132.5, 132.1, 131.6, 131.0, 128.6, 128.1, 126.0, 123.1, 120.1, 119.4, 115.2, 112.7, 86.1, 74.2, 48.8, 46.8, 35.5; ESI MS $m / z 541.8(\mathrm{M}+\mathrm{H})^{+}$.
(R)-4-(4-Chlorophenyl)-3-(3-[4-[4-(4-\{[4-(dimethylamino)-1-(phenylthio)but-2-yl]amino\}-3-nitrophenylsulfonamido)-phenyl]piperazin-1-yl\}phenyl)-5-ethyl-1-methyl-1H-pyr-role-2-carboxylic acid (21). $\mathrm{Pd}-\mathrm{C}(10 \% ; 15 \mathrm{mg})$ was added to a solution of compound $43(82 \mathrm{mg}, 0.15 \mathrm{mmol})$ in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and $\mathrm{MeOH}(3 \mathrm{~mL})$. The mixture was stirred under 1 atm of H_{2} at room temperature for 0.5 h before being filtered through Celite and concentrated. The resulting aniline was used in the next step without purification. To this aniline in pyridine (5 mL) was added 4-fluoro-3-nitrobenzene-1-sulfonyl chloride ($36 \mathrm{mg}, 0.15 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The pyridine was removed under vacuum and the residue was purified by flash chromatography on silica gel to give 4-(4-chlorophenyl)-5-ethyl-3-(3-\{4-[4-(4-fluoro-3-nitrophenylsulfonamido)phenyl]-piperazin-1-yl\}phenyl)-1-methyl-1H-pyrrole-2-carboxylic acid. DIEA ($53 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) was added to a solution of this sulfonamide and (R) $-N^{1}, N^{1}$ -dimethyl-4-(phenylthio)butane-1,3-diamine ($34 \mathrm{mg}, 0.15$ mmol) in DMF. The reaction mixture was stirred overnight and concentrated. The residue was resolved in a mixture of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{CN}$ (a trace of HCl was added to assist with solubility), and purification by HPLC with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{CN}$ (without TFA) as eluents afforded $21(41 \mathrm{mg}, 29 \%$ in four steps). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.34$ (d, $J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{dd}, J=1.9,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-6.93(\mathrm{~m}, 16 \mathrm{H}), 6.83-$ $6.81(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.35(\mathrm{~m}$, $2 \mathrm{H}), 3.24-3.21(\mathrm{~m}, 10 \mathrm{H}), 2.86(\mathrm{~s}, 6 \mathrm{H}), 2.66(\mathrm{q}, J=7.5 \mathrm{~Hz}$, 2H), 2.35-2.13 (m, 2H), $1.16(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 164.8,147.9,140.3,138.3,136.2,135.6$, 134.5, 133.3, 133.1, 132.3, 131.6, 130.1, 129.2, 129.0, 128.0, 127.9, 127.7, 124.5, 123.0, 122.1, 120.3, 118.5, 116.8, 116.2, 56.0, 52.4, 52.1, 50.3, 43.5, 39.6, 33.6, 30.1, 18.9, 14.5; ESI MS $m / z 922.5(\mathrm{M}+\mathrm{H})^{+}$.

Fluorescence Polarization-Based Binding Assays. Details of the expression and purification of $\mathrm{Bcl}-2, \mathrm{Bcl}-\mathrm{xL}$, and $\mathrm{Mcl}-1$ proteins and determination of K_{d} values of fluorescent probes to proteins are provided in the Supporting Information. IC_{50} and K_{i} values to $\mathrm{Bcl}-2 / \mathrm{Bcl}-\mathrm{xL} / \mathrm{Mcl}-1$ of our synthesized compounds and reference compounds were determined in competitive binding experiments, in which an inhibitor in serial dilutions was allowed to compete with a fixed concentration of a fluorescent probe for a fixed concentration of a protein. Mixtures of $5 \mu \mathrm{~L}$ of the tested compound in DMSO and $120 \mu \mathrm{~L}$ of preincubated protein/probe complex in the assay buffer were added to assay plates and incubated at room temperature for 2 h with gentle shaking. The final concentrations of the protein and probe, respectively, were 1.5 nM and 1 nM for the $\mathrm{Bcl}-2$ assay, 10 nM and 2 nM for the Bcl-xL assay, and 20 nM and 2 nM for the Mcl-1 assay. Controls containing protein/probe complex only (equivalent to 0% inhibition) or free probe only (equivalent to 100% inhibition), were included in each assay plate. FP values were measured as described above. IC_{50} values
were determined by nonlinear regression fitting of the competition curves. The K_{i} value of a compound to a protein was calculated by use of the equation described previously, ${ }^{26}$ based upon the measured IC_{50} value, the K_{d} value of the probe to the protein, and the concentration of the protein and probe in the competitive assays. K_{i} values were also calculated from an equation published in the literature. ${ }^{27}$ The values obtained from both equations were found to be in excellent agreement.

Molecular Modeling. Crystal structures of Bcl-xL with $\mathbf{1}^{18}$ (PDB entry 2 YXJ) and 4 were used to model the binding poses of our designed compounds with $\mathrm{Bcl}-\mathrm{xL}$. In the binding models, the structure of $\mathrm{Bcl}-\mathrm{xL}$ in complex with 4 was superimposed on that of Bcl-xL in complex with 1 . The core scaffold of 4 then replaced the 4 'chloro-2-methyl-1,1'-biphenyl group of 1 to generate the initial binding model, which was then refined by a 1 ns molecular dynamics (MD) simulation. All the modifications of the ligands were performed by the Sybyl program. ${ }^{28}$

The charge and force field parameters of the compounds were obtained with the most recent Antechamber module in the Amber 10 program suite, ${ }^{29}$ where the charge models were calculated from the Gaussian 98 program ${ }^{30}$ at the HartreeFock level by use of the $6-31 \mathrm{G}^{* *}$ basis sets. Protocols for the MD simulation are the following. The total charge of the system was neutralized by first adding counterions. Then, the system was solvated in a $10 \AA$ cubic box of water by use of the TIP3P water model. ${ }^{31}$ Two thousand steps of minimization of the system were performed where the protein and the modeled compound were constrained by a force constant of $50 \mathrm{kcal} \cdot \mathrm{mol}^{-1} \cdot \AA^{-2}$. After minimization, a 20 ps simulation was used to gradually raise the temperature of the system to 298 K while the whole system was constrained by a force constant of $10 \mathrm{kcal} \cdot \mathrm{mol}^{-1} \cdot \AA^{-2}$. Another 40 ps of equilibrium run was used where only the backbone atoms of the protein and the ligand atoms were constrained by a force constant of $2 \mathrm{kcal} \cdot \mathrm{mol}^{-1} \cdot \AA^{-2}$. A final production run of 1 ns was performed with no constraints on any atoms of the complex structure. When constraints were applied, the initial complex structure was used as a reference structure. All the MD simulations were at NTP. The SHAKE algorithm ${ }^{32}$ was used to fix the bonds involving hydrogen. The PME method ${ }^{33}$ was used and the nonbonded cutoff distance was set at $10 \AA$. The time step was 2 fs , and the neighboring pairs list was updated in every 20 steps. Final conformations of Bcl-xL in complex with 6 and 7 are shown in Figure S1 in Supporting Information.

Cell Growth Assay. The effect of compounds on cell growth was evaluated by a WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)- 2 H -tetrazolium, monosodium salt] assay (Dojindo Molecular Technologies, Gaithersburg, Maryland). Human small-cell lung cancer cell lines H146 and H1417 were purchased from the American Type Culture Collection (ATCC) and were maintained in RPMI-1640 medium containing 10% fetal bovine serum (FBS). Cells were seeded in 96 -well flat bottom cell culture plates at a density of 1×10^{4} cells/well with various concentrations of compounds and incubated for 4 days. At the end of incubation, WST- 8 dye ($20 \mu \mathrm{~L}$) was added to each well and incubated for an additional $1-2 \mathrm{~h}$, and then the absorbance was measured in a microplate reader (Molecular Devices) at 450 nm . The concentration of compounds that inhibited cell growth by $50 \%\left(\mathrm{IC}_{50}\right)$ was calculated by comparing absorbance in the untreated cells and the cells treated with the compounds by use of the GraphPad Prism software (GraphPad Software, La Jolla, CA). At least three
independent experiments were performed to obtain the standard deviation for each compound in each cell line.

Cell Death Assay. Cell death assays were performed via trypan blue staining. Cells were treated with the indicated compounds. At the end of treatment, cells were collected and stained with trypan blue. Cells that stained blue or morphologically unhealthy cells were scored as dead cells. At least 100 cells were counted for each sample.

Western Blotting. Cells were lysed in radioimmunoprecipitation assay lysis buffer [phosphate-buffered saline containing 1% NP40, 0.5% sodium deoxycholate, and 0.1% sodium dodecyl sulfate (SDS)] supplemented with $1 \mu \mathrm{~mol} / \mathrm{L}$ phenylmethanesulfonyl fluoride and 1 protease inhibitor cocktail tablet per 10 mL on ice for 20 min , and lysates were then cleared by centrifugation before protein concentration determination by use of the BioRad protein assay kit according to the manufacturer's instructions. Proteins were electrophoresed onto SDS-containing 4-20\% polyacrylamide gels (Invitrogen) and transferred onto poly(vinylidene difluoride) membranes. Following blocking in 5% milk, membranes were incubated with a specific primary antibody, washed, and incubated with horseradish peroxidaselinked secondary antibody (Amersham). The signals were visualized with the chemiluminescent horseradish peroxidase antibody detection reagent (Denville Scientific). Rabbit antibodies against PARP and caspase-3 were from Cell Signaling Technology, and rabbit anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was from Santa Cruz Biotechnology.

Bcl-xL Crystallographic Studies. Expression and purification of Bcl-xL $\Delta \mathrm{TM} \Delta \mathrm{LP}$ is described in the Supporting Information. Prior to crystallization, Bcl-xL was incubated with a 5 -fold molar excess of compound 4 in the presence of 4% DMSO for 1 h at $4^{\circ} \mathrm{C}$ and then concentrated to $7 \mathrm{mg} / \mathrm{mL}$. Crystals of $\mathrm{Bcl}-\mathrm{xL} / 4$ were grown by vapor diffusion in a sitting drop tray with 1.2 M sodium citrate and 25 mM 2-(cyclohexylamino)ethanesulfonic acid (CHES) buffer, pH 9.0, as the mother liquor. Crystals did not appear until after the well was opened, perturbed with a loop, and resealed. In the experiment, the crystallization drops contained equal volumes of protein and well solution. Prior to data collection, crystals were cryoprotected in well solution with increasing amounts of glycerol, to a final concentration of 20%, and then flash-frozen in liquid nitrogen.

X-ray data was collected at LS-CAT ID-21-F and G lines at the Advanced Photon Source at Argonne National Lab. Data were processed with HKL2000. ${ }^{34}$ The Bcl-xL/4 complex crystallized in the $P 4_{2} 2_{1} 2$ space group and diffracted to $1.7 \AA$ resolution. The structure contained one molecule in the asymmetric unit. The structure of the complex was solved by molecular replacement with Phaser ${ }^{35}$ by use of a structure of Bcl-xL previously solved in our laboratory as a starting model. Iterative rounds of refinement and model building were completed by use of Buster ${ }^{36}$ and Coot, ${ }^{37}$ respectively. The initial $F_{\mathrm{o}}-F_{\mathrm{c}}$ electron density map revealed the presence of the compounds in the binding site of $\mathrm{Bcl}-\mathrm{xL}$. Only the three-ring core of 4 was visible in the $F_{o}-F_{c}$ electron density map contoured at 3σ. The PRODRG server ${ }^{38}$ was used to create the starting coordinates and restraint files for the compounds. The current $R_{\text {free }} / R_{\text {work }}$ for the $\mathrm{Bcl}-\mathrm{xL} / 4$ structure is $0.2036 / 0.1854$. All amino acids fall into the allowed regions of the Ramanchandran plot with 98% in the preferred regions. Data collection and refinement statistics are given in Table S1 in Supporting Information.

ASSOCIATED CONTENT

S Supporting Information

Additional text, one figure, and one table with experimental procedures and spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

Accession Codes

${ }^{\dagger}$ Coordinates for $\mathrm{Bcl}-\mathrm{xL}$ complexed with 4 were deposited into the Protein Data Bank under Accession Number 3SPF.

AUTHOR INFORMATION

Corresponding Author

*Telephone 734-615-0362; fax 734-647-9647; e-mail shaomeng@ umich.edu.

Author Contributions

${ }^{\S}$ These authors contributed equally.

Notes

The authors declare the following competing financial interest(s): Ascentage has licensed this class of $\mathrm{Bcl}-2 / \mathrm{Bcl}-\mathrm{xL}$ inhibitors from the University of Michigan. Dr. Shaomeng Wang is a co-founder for Ascentage and owns stocks in Ascentage. Dr. Shaomeng Wang also serves as a consultant for Ascentage.

ACKNOWLEDGMENTS

This research was supported in part by a grant from the National Cancer Institute, National Institutes of Health (U19CA113317). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology TriCorridor for the support of this research program (Grant 085P1000817).

REFERENCES

(1) Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 2011, 144 (5), 646-674.
(2) Ziegler, D. S.; Kung, A. L. Therapeutic targeting of apoptosis pathways in cancer. Curr. Opin. Oncol. 2008, 20 (1), 97-103.
(3) Reed, J. C. Apoptosis-based therapies. Nat. Rev. Drug Discovery 2002, 1 (2), 111-121.
(4) Cory, S.; Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2002, 2 (9), 647-656.
(5) Cory, S.; Adams, J. M. Killing cancer cells by flipping the Bcl-2/ Bax switch. Cancer Cell 2005, 8 (1), 5-6.
(6) Labi, V.; Erlacher, M.; Kiessling, S.; Villunger, A. BH3-only proteins in cell death initiation, malignant disease and anticancer therapy. Cell Death Differ. 2006, 13 (8), 1325-1238.
(7) Lessene, G.; Czabotar, P. E.; Colman, P. M. BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discovery 2008, 7 (12), 989-1000.
(8) Di Micco, S.; Vitale, R.; Pellecchia, M.; Rega, M. F.; Riva, R.; Basso, A.; Bifulco, G. Identification of lead compounds as antagonists of protein $\mathrm{Bcl}-\mathrm{xL}$ with a diversity-oriented multidisciplinary approach. J. Med. Chem. 2009, 52 (23), 7856-7867.
(9) Feng, Y.; Ding, X.; Chen, T.; Chen, L.; Liu, F.; Jia, X.; Luo, X.; Shen, X.; Chen, K.; Jiang, H.; Wang, H.; Liu, H.; Liu, D. Design, synthesis, and interaction study of quinazoline- $2(1 \mathrm{H})$-thione derivatives as novel potential Bcl-xL inhibitors. J. Med. Chem. 2010, 53 (9), 3465-3479.
(10) Wei, J.; Stebbins, J. L.; Kitada, S.; Dash, R.; Placzek, W.; Rega, M. F.; Wu, B.; Cellitti, J.; Zhai, D.; Yang, L.; Dahl, R.; Fisher, P. B.; Reed, J. C.; Pellecchia, M. BI-97C1, an optically pure Apogossypol derivative as pan-active inhibitor of antiapoptotic B-cell lymphoma/
leukemia-2 (Bcl-2) family proteins. J. Med. Chem. 2010, 53 (10), 4166-4176.
(11) Wei, J.; Kitada, S.; Stebbins, J. L.; Placzek, W.; Zhai, D.; Wu, B.; Rega, M. F.; Zhang, Z.; Cellitti, J.; Yang, L.; Dahl, R.; Reed, J. C.; Pellecchia, M. Synthesis and biological evaluation of Apogossypolone derivatives as pan-active inhibitors of antiapoptotic B-cell lymphoma/ leukemia-2 (Bcl-2) family proteins. J. Med. Chem. 2010, 53 (22), 8000-8011.
(12) Rega, M. F.; Wu, B.; Wei, J.; Zhang, Z.; Cellitti, J. F.; Pellecchia, M. SAR by interligand nuclear overhauser effects (ILOEs) based discovery of acylsulfonamide compounds active against $\mathrm{Bcl}-\mathrm{x}(\mathrm{L})$ and Mcl-1. J. Med. Chem. 2011, 54 (17), 6000-6013.
(13) Oltersdorf, T.; Elmore, S. W.; Shoemaker, A. R.; Armstrong, R. C.; Augeri, D. J.; Belli, B. A.; Bruncko, M.; Deckwerth, T. L.; Dinges, J.; Hajduk, P. J.; Joseph, M. K.; Kitada, S.; Korsmeyer, S. J.; Kunzer, A. R.; Letai, A.; Li, C.; Mitten, M. J.; Nettesheim, D. G.; Ng, S.; Nimmer, P. M.; O'Connor, J. M.; Oleksijew, A.; Petros, A. M.; Reed, J. C.; Shen, W.; Tahir, S. K.; Thompson, C. B.; Tomaselli, K. J.; Wang, B.; Wendt, M. D.; Zhang, H.; Fesik, S. W.; Rosenberg, S. H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005, 435 (7042), 677-681.
(14) Park, C. M.; Bruncko, M.; Adickes, J.; Bauch, J.; Ding, H.; Kunzer, A.; Marsh, K. C.; Nimmer, P.; Shoemaker, A. R.; Song, X.; Tahir, S. K.; Tse, C.; Wang, X.; Wendt, M. D.; Yang, X.; Zhang, H.; Fesik, S. W.; Rosenberg, S. H.; Elmore, S. W. Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins. J. Med. Chem. 2008, 51 (21), 6902-6915.
(15) Tse, C.; Shoemaker, A. R.; Adickes, J.; Anderson, M. G.; Chen, J.; Jin, S.; Johnson, E. F.; Marsh, K. C.; Mitten, M. J.; Nimmer, P.; Roberts, L.; Tahir, S. K.; Xiao, Y.; Yang, X.; Zhang, H.; Fesik, S.; Rosenberg, S. H.; Elmore, S. W. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008, 68 (9), 34213428.
(16) Sleebs, B. E.; Czabotar, P. E.; Fairbrother, W. J.; Fairlie, W. D.; Flygare, J. A.; Huang, D. C.; Kersten, W. J.; Koehler, M. F.; Lessene, G.; Lowes, K.; Parisot, J. P.; Smith, B. J.; Smith, M. L.; Souers, A. J.; Street, I. P.; Yang, H.; Baell, J. B. Quinazoline sulfonamides as dual binders of the proteins B-cell lymphoma 2 and B-cell lymphoma extra long with potent proapoptotic cell-based activity. J. Med. Chem. 2011, 54 (6), 1914-1926.
(17) Muchmore, S. W.; Sattler, M.; Liang, H.; Meadows, R. P.; Harlan, J. E.; Yoon, H. S.; Nettesheim, D.; Chang, B. S.; Thompson, C. B.; Wong, S. L.; Ng, S. L.; Fesik, S. W. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 1996, 381 (6580), 335-341.
(18) Lee, E. F.; Czabotar, P. E.; Smith, B. J.; Deshayes, K.; Zobel, K.; Colman, P. M.; Fairlie, W. D. Crystal structure of ABT-737 complexed with $\mathrm{Bcl}-\mathrm{xL}$: implications for selectivity of antagonists of the $\mathrm{Bcl}-2$ family. Cell Death Differ. 2007, 14 (9), 1711-1713.
(19) Bruncko, M.; Oost, T. K.; Belli, B. A.; Ding, H.; Joseph, M. K.; Kunzer, A.; Martineau, D.; McClellan, W. J.; Mitten, M.; Ng, S. C.; Nimmer, P. M.; Oltersdorf, T.; Park, C. M.; Petros, A. M.; Shoemaker, A. R.; Song, X.; Wang, X.; Wendt, M. D.; Zhang, H.; Fesik, S. W.; Rosenberg, S. H.; Elmore, S. W. Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. J. Med. Chem. 2007, 50 (4), 641-662. (20) Bullington, J. L.; Wolff, R. R.; Jackson, P. F. Regioselective preparation of 2 -substituted 3,4 -diaryl pyrroles: a concise total synthesis of ningalin B. J. Org. Chem. 2002, 67 (26), 9439-9442.
(21) Hartwig, J. F.; Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.; Alcazar-Roman, L. M. Room-temperature palladium-catalyzed amination of aryl bromides and chlorides and extended scope of aromatic $\mathrm{C}-\mathrm{N}$ bond formation with a commercial ligand. J. Org. Chem. 1999, 64 (15), 5575-5580.
(22) Chinchilla, R.; Najera, C. The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem Rev 2007, 107 (3), 874-922.
(23) Zhu, W.; Ma, D. Synthesis of aryl azides and vinyl azides via proline-promoted CuI-catalyzed coupling reactions. Chem. Commun. 2004, 7, 888-889.
(24) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew. Chem., Int. Ed. 2002, 41 (14), 2596-2599.
(25) Zhang, H.; Cai, Q.; Ma, D. Amino acid promoted CuI-catalyzed $\mathrm{C}-\mathrm{N}$ bond formation between aryl halides and amines or N containing heterocycles. J. Org. Chem. 2005, 70 (13), 5164-5173.
(26) Nikolovska-Coleska, Z.; Wang, R.; Fang, X.; Pan, H.; Tomita, Y.; Li, P.; Roller, P. P.; Krajewski, K.; Saito, N. G.; Stuckey, J. A.; Wang, S. Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal. Biochem. 2004, 332 (2), 261-273.
(27) Huang, X. Fluorescence polarization competition assay: the range of resolvable inhibitor potency is limited by the affinity of the fluorescent ligand. J. Biomol. Screen. 2003, 8 (1), 34-38.
(28) Sybyl, a molecular modeling system, is supplied by Tripos, Inc., St. Louis, MO 63144.
(29) Case, D. A.; Darden, T. A.; T., E. Cheatham, I.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Crowley, M.; Walker, R. C.; Zhang, W.; Merz, K. M.; B.Wang; Hayik, S.; Roitberg, A.; Seabra, G.; Kolossváry, I.; K. F. Wong; Paesani, F.; Vanicek, J.; X.Wu; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.; Hornak, V.; Cui, G.; Mathews, D. H.; Seetin, M. G.; Sagui, C.; Babin, V.; Kollman, P. A. AMBER10; University of California, San Francisco, 2008.
(30) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M.; Johnson, B.; Chen, W.; Wong, M. M.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A-11; Gaussian, Inc.: Pittsburgh, PA, 2001.
(31) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79 (2), 926-935.
(32) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23 (3), 327-341.
(33) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald - an $\mathrm{N} \cdot \log (\mathrm{N})$ method for Ewald sums in large systems. J. Chem. Phys. 1993, 98 (12), 10089-10092.
(34) Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. In Methods in Enzymology; Carter, C. W., Jr., Ed.; Academic Press: New York, 1997; Vol. 276, pp 307-326.
(35) McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40 (Pt 4), 658-674.
(36) Bricogne, G.; Blanc, E.; Brandl, M.; Flensburg, C.; Keller, P.; Paciorek, W.; Roversi, P.; Sharff, A.; Smart, O.; Vonrhein, C.; Womack, T. BUSTER, version 2.9; Global Phasing Ltd., Cambridge, U.K., 2010.
(37) Emsley, P.; Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D: Biol. Crystallogr. 2004, 60, 2126-2132.
(38) Schuttelkopf, A. W.; van Aalten, D. M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D: Biol. Crystallogr. 2004, 60 (Pt 8), 1355-1363.

[^0]: Received: February 8, 2012
 Published: March 26, 2012

